Stable Diffusion核心网络结构——CLIP Text Encoder

🌺系列文章推荐🌺

扩散模型系列文章正在持续的更新,更新节奏如下,先更新SD模型讲解,再更新相关的微调方法文章,敬请期待!!!(本文及其之前的文章均已更新

 SD模型原理:

  1. Stable Diffusion概要讲解
  2. Stable diffusion详细讲解
  3. Stable Diffusion的加噪和去噪详解
  4. Diffusion Model
  5. Stable Diffusion核心网络结构——VAE
  6. Stable Diffusion核心网络结构——CLIP Text Encoder
  7. Stable Diffusion核心网络结构——U-Net
  8. Stable Diffusion中U-Net的前世今生与核心知识
  9. SD模型性能测评
  10. Stable Diffusion经典应用场景
  11. SDXL的优化工作

微调方法原理:

  1. DreamBooth
  2. LoRA
  3. LORA及其变种介绍
  4. ControlNet
  5. ControlNet文章解读
  6. Textual Inversion 和 Embedding fine-tuning

​​​ 

Stable Diffusion核心网络结构

摘录来源:https://zhuanlan.zhihu.com/p/632809634

目录

Stable Diffusion核心网络结构

SD模型整体架构初识

CLIP Text Encoder模型

微调文本映射

原始CLIP、BLIP


SD模型整体架构初识

Stable Diffusion模型整体上是一个End-to-End模型,主要由VAE(变分自编码器,Variational Auto-Encoder),U-Net以及CLIP Text Encoder三个核心组件构成。

本文主要介绍CLIP Text Encoder,VAE和U-Net请参考:

  1. Stable Diffusion核心网络结构——VAE
  2. Stable Diffusion核心网络结构——U-Net

在FP16精度下Stable Diffusion模型大小2G(FP32:4G),其中U-Net大小1.6G,VAE模型大小160M以及CLIP Text Encoder模型大小235M(约123M参数)。其中U-Net结构包含约860M参数,FP32精度下大小为3.4G左右。

​​​​​
Stable Diffusion整体架构图

CLIP Text Encoder模型

作为文生图模型,Stable Diffusion中的文本编码模块直接决定了语义信息的优良程度,从而影响到最后图片生成的质量和与文本的一致性。

在这里,多模态领域的神器——CLIP(Contrastive Language-Image Pre-training),跨过了周期,从传统深度学习时代进入AIGC时代,成为了SD系列模型中文本和图像之间的“桥梁”并且从某种程度上讲,正是因为CLIP模型的前置出现,加速推动了AI绘画领域的繁荣

那么,什么是CLIP呢?CLIP有哪些优良的性质呢?为什么是CLIP呢?

首先,CLIP模型是一个基于对比学习的多模态模型,主要包含Text Encoder和Image Encoder两个模型。其中Text Encoder用来提取文本的特征,可以使用NLP中常用的text transformer模型作为Text Encoder;而Image Encoder主要用来提取图像的特征,可以使用CNN/Vision transformer模型(ResNet和ViT等)作为Image Encoder。与此同时,他直接使用4亿个图片与标签文本对数据集进行训练,来学习图片与本文内容的对应关系。

与U-Net的Encoder和Decoder一样,CLIP的Text Encoder和Image Encoder也能非常灵活的切换,庞大图片与标签文本数据的预训练赋予了CLIP强大的zero-shot分类能力。

灵活的结构,简洁的思想,让CLIP不仅仅是个模型,也给我们一个很好的借鉴,往往伟大的产品都是大道至简的。更重要的是,CLIP把自然语言领域的抽象概念带到了计算机视觉领域。

​​​
CLIP模型训练使用的图片-文本对数据

​CLIP在训练时,从训练集中随机取出一张图片和标签文本,接着CLIP模型的任务主要是通过Text Encoder和Image Encoder分别将标签文本和图片提取embedding向量,然后用余弦相似度(cosine similarity)来比较两个embedding向量的相似性,以判断随机抽取的标签文本和图片是否匹配,并进行梯度反向传播,不断进行优化训练。

​​​
CLIP模型训练示意图

​上面讲了Batch为1时的情况,当我们把训练的Batch提高到 N 时,其实整体的训练流程是不变的。只是现在CLIP模型需要将N个标签文本和N个图片的两两组合预测出N^2个可能的文本-图片对的余弦相似性,即下图所示的矩阵。这里共有N个正样本,即真正匹配的文本和图片(矩阵中的对角线元素),而剩余的N^2−N个文本-图片对为负样本,这时CLIP模型的训练目标就是最大化N个正样本的余弦相似性,同时最小化N^2−N个负样本的余弦相似性

​​​
Batch为N时的CLIP训练示意图

完成CLIP的训练后,输入配对的图片和标签文本,则Text Encoder和Image Encoder可以输出相似的embedding向量,计算余弦相似度就可以得到接近1的结果。同时对于不匹配的图片和标签文本,输出的embedding向量计算余弦相似度则会接近0

就这样,CLIP成为了计算机视觉和自然语言处理自然语言处理这两大AI方向的“桥梁”,从此AI领域的多模态应用有了经典的基石模型。

上面我们讲到CLIP模型主要包含Text Encoder和Image Encoder两个部分,在Stable Diffusion中主要使用了Text Encoder部分。CLIP Text Encoder模型将输入的文本Prompt进行编码,转换成Text Embeddings(文本的语义信息),通过U-Net网络的CrossAttention模块嵌入Stable Diffusion中作为Condition条件,对生成图像的内容进行一定程度上的控制与引导,目前SD模型使用的是CLIP ViT-L/14CLIP ViT-L/14中的Text Encoder模型。

CLIP ViT-L/14 中的Text Encoder是只包含Transformer结构的模型,一共由12个CLIPEncoderLayer模块组成,模型参数大小是123M,具体CLIP Text Encoder模型结构如下图所示。其中特征维度为768,token数量是77,所以输出的Text Embeddings的维度为77x768

CLIPEncoderLayer(
    (self_attn): CLIPAttention(
        (k_proj): Linear(in_features=768, out_features=768, bias=True)
        (v_proj): Linear(in_features=768, out_features=768, bias=True)
        (q_proj): Linear(in_features=768, out_features=768, bias=True)
        (out_proj): Linear(in_features=768, out_features=768, bias=True)
      )
    (layer_norm1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (mlp): CLIPMLP(
        (activation_fn): QuickGELUActivation()
        (fc1): Linear(in_features=768, out_features=3072, bias=True)
            (fc2): Linear(in_features=3072, out_features=768, bias=True)
          )
          (layer_norm2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
        )

下图是Rocky梳理的Stable Diffusion CLIP Text Encoder的完整结构图,大家可以感受一下其魅力,看着这个完整结构图学习Stable Diffusion CLIP Text Encoder部分,相信大家脑海中的思路也会更加清晰:

​​​
Stable Diffusion CLIP Text Encoder完整结构图

一般来说,我们提取CLIP Text Encoder模型最后一层特征作为CrossAttention模块的输入,但是开源社区的不断实践为我们总结了如下经验:当我们生成二次元内容时,可以选择提取CLIP Text Encoder模型倒数第二层特征;当我们生成写实场景内容时,可以选择提取CLIP Text Encoder模型最后一层的特征。这让Rocky想起了SRGAN以及感知损失,其也是提取了VGG网络的中间层特征才达到了最好的效果,AI领域的“传承”与共性,往往在这些不经意间,让人感到人工智能的魅力与美妙。

由于CLIP训练时所采用的最大Token数是77,所以在SD模型进行前向推理时,当输入Prompt的Token数量超过77时,将通过Clip操作拉回77x768,而如果Token数不足77则会使用padding操作得到77x768。如果说全卷积网络的设计让图像输入尺寸不再受限,那么CLIP的这个设置就让输入的文本长度不再受限(可以是空文本)。无论是非常长的文本,还是空文本,最后都将得到一样维度的特征矩阵。

同时在SD模型的训练中,一般来说CLIP的整体性能是足够支撑我们的下游细分任务的,所以CLIP Text Encoder模型参数是冻结的,我们不需要对其重新训练

【如果我们想要一个新的embeeding词对应新特征向量,可以进行Textual Inversion 或 embedding fine-tuning微调】

注意:

Textual Inversionembedding fine-tuning 微调的部分并不是 Stable Diffusion 模型中的 CLIP Text Encoder,而是训练新的词汇嵌入(embedding),这些嵌入会被用在 CLIP Text Encoder 的输入层,但CLIP Text Encoder 本身的参数是冻结的,并不会在这个过程中被调整。

在AIGC时代,我们使用语言文字表达的创意与想法,可以轻松让Stable Diffusion生成出一幅幅精美绝伦、创意十足、飞速破圈的图片。而这些背后,都有CLIP的功劳,CLIP不仅仅连接了文本和图像,也连接了AI行业与千万个需要生成图片和视频的行业,AI绘画的ToC普惠如此之强,Rocky认为CLIP就是那个“隐形冠军”

微调文本映射

Textual Inversion 和 embedding fine-tuning

原始CLIP、BLIP

参考:万字长文解读深度学习——多模态模型CLIP、BLIP、ViLT-CSDN博客

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/919587.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

集群聊天服务器(13)redis环境安装和发布订阅命令

目录 环境安装订阅redis发布-订阅的客户端编程环境配置客户端编程 功能测试 环境安装 sudo apt-get install redis-server 先启动redis服务 /etc/init.d/redis-server start默认在6379端口上 redis是存键值对的,还可以存链表、数组等等复杂数据结构 而且数据是在…

git日志查询和导出

背景 查看git的提交记录并下载 操作 1、找到你idea代码的路径,然后 git bash here打开窗口 2、下载所有的日志记录 git log > commit.log3、下载特定日期范围内记录 git log --since"2024-09-01" --until"2024-11-18" 你的分支 > c…

Go中数组和切片

数组和切片 【1】、数组 1、什么是数组 一组数 数组需要是相同类型的数据的集合 数组是需要定义大小的 数组一旦定义了大小是不可以改变的。 package mainimport "fmt"// 数组 // 数组和其他变量定义没什么区别,唯一的就是这个是一组数,需要…

three.js加载GLTF模型

要在three.js中正确加载和显示GLTF模型,需要遵循一系列步骤来确保模型的纹理和材质被正确应用。以下是加载GLTF模型的基本步骤: 引入必要的three.js模块: 引入了GLTFLoader模块,用来加载GLTF格式模型的类。 创建加载器实例&#…

消息中间件分类

消息中间件(Message Middleware)是一种在分布式系统中实现跨平台、跨应用通信的软件架构。它基于消息传递机制,允许不同系统、不同编程语言的应用之间进行异步通信。 常见的消息中间件类型包括: 1. JMS(Java Message S…

形态学图像处理(Morphological Image Processing)

形态学图像处理(Morphological Image Processing) 前言 ‍ 本博客为个人总结数字图像处理一课所写,并给出适当的扩展和相应的demo。 写博客跟做 checkpoint​ 很像,毕竟个人还不能达到那种信手拈来的境界,忘了就是从零开始训练&#xff0…

LeetCode 面试经典 150 题回顾

目录 一、数组 / 字符串 1.合并两个有序数组 (简单) 2.移除元素 (简单) 3.删除有序数组中的重复项 (简单) 4.删除有序数组中的重复项 II(中等) 5.多数元素(简单&am…

项目进度计划表:详细的甘特图的制作步骤

甘特图(Gantt chart),又称为横道图、条状图(Bar chart),是一种用于管理时间和任务活动的工具。 甘特图由亨利劳伦斯甘特(Henry Laurence Gantt)发明,是一种通过条状图来…

netty之内存泄露检测

写在前面 本文看下netty内存泄露检测相关内容,当然,这里的内存泄露不是bytebuf对象本身,是bytebuf关联的堆外内存。 1:实战 我们还是使用netty源码的example模块的echo例子,但是我们需要对server的handler稍微做些改…

服务器上部署并启动 Go 语言框架 **GoZero** 的项目

要在服务器上部署并启动 Go 语言框架 **GoZero** 的项目,下面是一步步的操作指南: ### 1. 安装 Go 语言环境 首先,确保你的服务器上已安装 Go 语言。如果还没有安装,可以通过以下步骤进行安装: #### 1.1 安装 Go 语…

如何去掉el-input 中 type=“number“两侧的上下按键

<el-input v-model.trim"row.length" type"number" min"0" placeholder""></el-input> // 如何去掉el-input-number两侧的上下按键 ::v-deep input::-webkit-outer-spin-button, ::v-deep input::-webkit-inner-spin-butt…

前端注册代码

代码 <template><el-card class"register" style"max-width: 480px ; background-color: aliceblue;"><template #header><div class"card-header"><span>注册</span></div></template><el…

【第六课】Rust所有权系统(二)

目录 前言 借用和引用 借用规则 切片和迭代器 总结 前言 上节课介绍了Rust中的所有权系统&#xff0c;简单回顾一下&#xff0c;rust的内存系统系统&#xff0c;每一块内存都有一个主人&#xff0c;主人对这块内存有着读写和释放的权限&#xff0c;当主人离开作用域之后&am…

1024程序员节:永无bug

引言 每年的10月24日是程序员节。这一天不仅是程序员们的节日&#xff0c;更是对整个行业的庆祝与思考。在这个特殊的日子里&#xff0c;我们不仅回顾过去一年的成就与挑战&#xff0c;也展望未来的发展与机遇。本篇文章将围绕程序员节的主题&#xff0c;探讨前端技术的最新动…

STM32设计学生宿舍监测控制系统-分享

目录 前言 一、本设计主要实现哪些很“开门”功能&#xff1f; 二、电路设计原理图 电路图采用Altium Designer进行设计&#xff1a; 三、实物设计图 四、程序源代码设计 五、获取资料内容 前言 本项目旨在利用STM32单片机为核心&#xff0c;结合传感器技术、无线通信技…

Node.js | Yarn下载安装与环境配置

一、安装Node.js Yarn 是 Node.js 下的包管理工具&#xff0c;因此想要使用 Yarn 就必须先下载 Node.js。 推荐参考&#xff1a;Node.js | npm下载安装及环境配置教程 二、Yarn安装 打开cmd&#xff0c;输入以下命令&#xff1a; npm install -g yarn检查是否安装成功&…

【MySQL】MySQL在Centos环境安装

&#x1f525;个人主页&#xff1a; Forcible Bug Maker &#x1f525;专栏&#xff1a; MySQL 目录 &#x1f308;前言&#x1f525;卸载不要的环境&#x1f525;检查系统安装包&#x1f525;卸载这些默认安装包&#x1f525;获取mysql官方yum源&#x1f525;安装mysql yum源…

selenium元素定位校验以及遇到的元素操作问题记录

页面元素定位方法及校验 使用比较多的是通过id、class和xpath来对元素进行定位。在定位前可以现在浏览器验证是否可以找到指定的元素。这样就不用每添加一个元素定位都运行代码来检查定位方式表达式是否正确。 使用XPATH定位 在浏览器F12&#xff0c;找到元素&#xff0c;在元…

LLM文档对话 —— pdf解析关键问题

一、为什么需要进行pdf解析&#xff1f; 最近在探索ChatPDF和ChatDoc等方案的思路&#xff0c;也就是用LLM实现文档助手。在此记录一些难题和解决方案&#xff0c;首先讲解主要思想&#xff0c;其次以问题回答的形式展开。 二、为什么需要对pdf进行解析&#xff1f; 当利用L…

小试牛刀-Anchor安装和基础测试

目录 一、编写目的 二、安装步骤 2.1 安装Rust 设置rustup镜像 安装Rust 2.2 安装node.js 2.3 安装Solana-CLI 2.4 安装Anchor CLI 三、Program测试 四、可能出现的问题 Welcome to Code Blocks blog 本篇文章主要介绍了 [Anchor安装和基础测试] 博主广交技术好友&…