2023年国赛 高教社杯数学建模思路 - 案例:随机森林

文章目录

    • 1 什么是随机森林?
    • 2 随机深林构造流程
    • 3 随机森林的优缺点
      • 3.1 优点
      • 3.2 缺点
    • 4 随机深林算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 什么是随机森林?

随机森林属于 集成学习 中的 Bagging(Bootstrap AGgregation 的简称) 方法。如果用图来表示他们之间的关系如下:

在这里插入图片描述
决策树 – Decision Tree

在这里插入图片描述
在解释随机森林前,需要先提一下决策树。决策树是一种很简单的算法,他的解释性强,也符合人类的直观思维。这是一种基于if-then-else规则的有监督学习算法,上面的图片可以直观的表达决策树的逻辑。

随机森林 – Random Forest | RF

在这里插入图片描述
随机森林是由很多决策树构成的,不同决策树之间没有关联。

当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。

2 随机深林构造流程

在这里插入图片描述

    1. 一个样本容量为N的样本,有放回的抽取N次,每次抽取1个,最终形成了N个样本。这选择好了的N个样本用来训练一个决策树,作为决策树根节点处的样本。
    1. 当每个样本有M个属性时,在决策树的每个节点需要分裂时,随机从这M个属性中选取出m个属性,满足条件m << M。然后从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性。
    1. 决策树形成过程中每个节点都要按照步骤2来分裂(很容易理解,如果下一次该节点选出来的那一个属性是刚刚其父节点分裂时用过的属性,则该节点已经达到了叶子节点,无须继续分裂了)。一直到不能够再分裂为止。注意整个决策树形成过程中没有进行剪枝。
    1. 按照步骤1~3建立大量的决策树,这样就构成了随机森林了。

3 随机森林的优缺点

3.1 优点

  • 它可以出来很高维度(特征很多)的数据,并且不用降维,无需做特征选择
  • 它可以判断特征的重要程度
  • 可以判断出不同特征之间的相互影响
  • 不容易过拟合
  • 训练速度比较快,容易做成并行方法
  • 实现起来比较简单
  • 对于不平衡的数据集来说,它可以平衡误差。
  • 如果有很大一部分的特征遗失,仍可以维持准确度。

3.2 缺点

  • 随机森林已经被证明在某些噪音较大的分类或回归问题上会过拟合。
  • 对于有不同取值的属性的数据,取值划分较多的属性会对随机森林产生更大的影响,所以随机森林在这种数据上产出的属性权值是不可信的

4 随机深林算法实现

数据集:https://archive.ics.uci.edu/ml/machine-learning-databases/undocumented/connectionist-bench/sonar/

import csv
from random import seed
from random import randrange
from math import sqrt


def loadCSV(filename):#加载数据,一行行的存入列表
    dataSet = []
    with open(filename, 'r') as file:
        csvReader = csv.reader(file)
        for line in csvReader:
            dataSet.append(line)
    return dataSet

# 除了标签列,其他列都转换为float类型
def column_to_float(dataSet):
    featLen = len(dataSet[0]) - 1
    for data in dataSet:
        for column in range(featLen):
            data[column] = float(data[column].strip())

# 将数据集随机分成N块,方便交叉验证,其中一块是测试集,其他四块是训练集
def spiltDataSet(dataSet, n_folds):
    fold_size = int(len(dataSet) / n_folds)
    dataSet_copy = list(dataSet)
    dataSet_spilt = []
    for i in range(n_folds):
        fold = []
        while len(fold) < fold_size:  # 这里不能用if,if只是在第一次判断时起作用,while执行循环,直到条件不成立
            index = randrange(len(dataSet_copy))
            fold.append(dataSet_copy.pop(index))  # pop() 函数用于移除列表中的一个元素(默认最后一个元素),并且返回该元素的值。
        dataSet_spilt.append(fold)
    return dataSet_spilt

# 构造数据子集
def get_subsample(dataSet, ratio):
    subdataSet = []
    lenSubdata = round(len(dataSet) * ratio)#返回浮点数
    while len(subdataSet) < lenSubdata:
        index = randrange(len(dataSet) - 1)
        subdataSet.append(dataSet[index])
    # print len(subdataSet)
    return subdataSet

# 分割数据集
def data_spilt(dataSet, index, value):
    left = []
    right = []
    for row in dataSet:
        if row[index] < value:
            left.append(row)
        else:
            right.append(row)
    return left, right

# 计算分割代价
def spilt_loss(left, right, class_values):
    loss = 0.0
    for class_value in class_values:
        left_size = len(left)
        if left_size != 0:  # 防止除数为零
            prop = [row[-1] for row in left].count(class_value) / float(left_size)
            loss += (prop * (1.0 - prop))
        right_size = len(right)
        if right_size != 0:
            prop = [row[-1] for row in right].count(class_value) / float(right_size)
            loss += (prop * (1.0 - prop))
    return loss

# 选取任意的n个特征,在这n个特征中,选取分割时的最优特征
def get_best_spilt(dataSet, n_features):
    features = []
    class_values = list(set(row[-1] for row in dataSet))
    b_index, b_value, b_loss, b_left, b_right = 999, 999, 999, None, None
    while len(features) < n_features:
        index = randrange(len(dataSet[0]) - 1)
        if index not in features:
            features.append(index)
    # print 'features:',features
    for index in features:#找到列的最适合做节点的索引,(损失最小)
        for row in dataSet:
            left, right = data_spilt(dataSet, index, row[index])#以它为节点的,左右分支
            loss = spilt_loss(left, right, class_values)
            if loss < b_loss:#寻找最小分割代价
                b_index, b_value, b_loss, b_left, b_right = index, row[index], loss, left, right
    # print b_loss
    # print type(b_index)
    return {'index': b_index, 'value': b_value, 'left': b_left, 'right': b_right}

# 决定输出标签
def decide_label(data):
    output = [row[-1] for row in data]
    return max(set(output), key=output.count)


# 子分割,不断地构建叶节点的过程对对对
def sub_spilt(root, n_features, max_depth, min_size, depth):
    left = root['left']
    # print left
    right = root['right']
    del (root['left'])
    del (root['right'])
    # print depth
    if not left or not right:
        root['left'] = root['right'] = decide_label(left + right)
        # print 'testing'
        return
    if depth > max_depth:
        root['left'] = decide_label(left)
        root['right'] = decide_label(right)
        return
    if len(left) < min_size:
        root['left'] = decide_label(left)
    else:
        root['left'] = get_best_spilt(left, n_features)
        # print 'testing_left'
        sub_spilt(root['left'], n_features, max_depth, min_size, depth + 1)
    if len(right) < min_size:
        root['right'] = decide_label(right)
    else:
        root['right'] = get_best_spilt(right, n_features)
        # print 'testing_right'
        sub_spilt(root['right'], n_features, max_depth, min_size, depth + 1)

        # 构造决策树
def build_tree(dataSet, n_features, max_depth, min_size):
    root = get_best_spilt(dataSet, n_features)
    sub_spilt(root, n_features, max_depth, min_size, 1)
    return root
# 预测测试集结果
def predict(tree, row):
    predictions = []
    if row[tree['index']] < tree['value']:
        if isinstance(tree['left'], dict):
            return predict(tree['left'], row)
        else:
            return tree['left']
    else:
        if isinstance(tree['right'], dict):
            return predict(tree['right'], row)
        else:
            return tree['right']
            # predictions=set(predictions)
def bagging_predict(trees, row):
    predictions = [predict(tree, row) for tree in trees]
    return max(set(predictions), key=predictions.count)
# 创建随机森林
def random_forest(train, test, ratio, n_feature, max_depth, min_size, n_trees):
    trees = []
    for i in range(n_trees):
        train = get_subsample(train, ratio)#从切割的数据集中选取子集
        tree = build_tree(train, n_features, max_depth, min_size)
        # print 'tree %d: '%i,tree
        trees.append(tree)
    # predict_values = [predict(trees,row) for row in test]
    predict_values = [bagging_predict(trees, row) for row in test]
    return predict_values
# 计算准确率
def accuracy(predict_values, actual):
    correct = 0
    for i in range(len(actual)):
        if actual[i] == predict_values[i]:
            correct += 1
    return correct / float(len(actual))


if __name__ == '__main__':
    seed(1) 
    dataSet = loadCSV('sonar-all-data.csv')
    column_to_float(dataSet)#dataSet
    n_folds = 5
    max_depth = 15
    min_size = 1
    ratio = 1.0
    # n_features=sqrt(len(dataSet)-1)
    n_features = 15
    n_trees = 10
    folds = spiltDataSet(dataSet, n_folds)#先是切割数据集
    scores = []
    for fold in folds:
        train_set = folds[
                    :]  # 此处不能简单地用train_set=folds,这样用属于引用,那么当train_set的值改变的时候,folds的值也会改变,所以要用复制的形式。(L[:])能够复制序列,D.copy() 能够复制字典,list能够生成拷贝 list(L)
        train_set.remove(fold)#选好训练集
        # print len(folds)
        train_set = sum(train_set, [])  # 将多个fold列表组合成一个train_set列表
        # print len(train_set)
        test_set = []
        for row in fold:
            row_copy = list(row)
            row_copy[-1] = None
            test_set.append(row_copy)
            # for row in test_set:
            # print row[-1]
        actual = [row[-1] for row in fold]
        predict_values = random_forest(train_set, test_set, ratio, n_features, max_depth, min_size, n_trees)
        accur = accuracy(predict_values, actual)
        scores.append(accur)
    print ('Trees is %d' % n_trees)
    print ('scores:%s' % scores)
    print ('mean score:%s' % (sum(scores) / float(len(scores))))

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/91869.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Win解答 | 解决键盘中 字母+空格 导致的输入法弹窗导致的一系列问题

近三个月来&#xff0c;一直都有一个键盘组合键的问题影响我的电脑使用&#xff0c;不管是打字还是打游戏&#xff0c;都会出现按键盘的 字母空格 弹出一个特殊符号的候选框&#xff0c;如下图所示 图片中为 S空格 所出现的弹窗 一个看似方便&#xff0c;实则难受的功能 其实打…

JVM7:垃圾回收是什么?从运行时数据区看垃圾回收到底回收哪块区域?垃圾回收如何去回收?垃圾回收策略,引用计数算法及循环引用问题,可达性分析算法

垃圾回收是什么&#xff1f;从运行时数据区看垃圾回收到底回收哪块区域&#xff1f; 垃圾回收如何去回收&#xff1f; 垃圾回收策略 引用计数算法及循环引用问题 可达性分析算法 垃圾回收是什么&#xff1f;从运行时数据区看垃圾回收到底回收哪块区域&#xff1f;垃圾回收如何去…

详细手机代理IP配置

嗨&#xff0c;亲爱的朋友们&#xff01;作为一家代理产品供应商&#xff0c;我知道有很多小伙伴在使用手机进行网络爬虫和数据采集时&#xff0c;常常会遇到一些IP限制的问题。别担心&#xff01;今天我要给大家分享一下手机IP代理的设置方法&#xff0c;让你们轻松应对这些限…

基于Android水果蔬菜果蔬到家商城系统 微信小程序uniAPP的开发与实现

果蔬到家是商家针对用户必不可少的一个部分。在商铺发展的整个过程中&#xff0c;果蔬到家担负着最重要的角色。为满足如今日益复杂的管理需求&#xff0c;各类果蔬到家程序也在不断改进。本课题所设计的springboot基于HBuilder X的果蔬到家APP&#xff0c;使用SpringBoot框架&…

Nginx 高级配置

目录 1 网页的状态页 2 Nginx 第三方模块 2.1 ehco 模块 3 变量 3.1 内置 3.2 定义变量 4 Nginx压缩功能 5 https 功能 6 自定义图标 1 网页的状态页 基于nginx 模块 ngx_http_stub_status_module 实现&#xff0c;在编译安装nginx的时候需要添加编译参数 --with-http…

php开发websocket笔记(1)

1.运行server1.php文件 Windows命令行运行 php server1.php<?phperror_reporting(E_ALL); set_time_limit(0); //ob_implicit_flush(); $address 0.0.0.0;//可以监听网络上的请求 $address 127.0.0.1;//只能监听本机的请求$port 10005; //创建端口 $socket1 socket_cr…

win开机自启jar包

下载winsw工具 只需下载图中红框的工具 https://github.com/winsw/winsw/releases 文件配置 将下载的文件与jar文件放置在一起&#xff0c;两个文件名修改为服务名 编辑xml文件 注意不要出现中文&#xff0c; 标签内的jar文件地址要改为自己目录 <service><!-- I…

【JVM】运行时数据区域

文章目录 说明程序计数器虚拟机栈本地方法栈Java堆方法区运行时常量池直接内存 说明 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域有各自的用途&#xff0c;以及创建和销毁的时间&#xff0c;有的区域随着虚拟机进程的启动而一直…

【图论】缩点的综合应用(一)

一.缩点的概念 缩点&#xff0c;也称为点缩法&#xff08;Vertex Contraction&#xff09;&#xff0c;是图论中的一种操作&#xff0c;通常用于缩小图的规模&#xff0c;同时保持了图的某些性质。这个操作的目标是将图中的一些节点合并为一个超级节点&#xff0c;同时调整相关…

【Springboot】| 从深入自动配置原理到实现 自定义Springboot starter

目录 一. &#x1f981; 前言二. &#x1f981; Spring-boot starter 原理实现分析2.1 自动配置原理 三. &#x1f981; 操作实践3.1 项目场景3.2 搭建项目3.3 添加相关依赖3.4 删除一些不需要的东西3.5 发邮件工具类逻辑编写3.6 创建相关配置类3.7 创建 Spring.factories 文件…

【javaweb】学习日记Day7 - Mysql 数据库 DQL 多表设计

之前学习过的SQL语句笔记总结戳这里→【数据库原理与应用 - 第六章】T-SQL 在SQL Server的使用_Roye_ack的博客-CSDN博客 目录 一、DQL 数据查询 1、基本查询 2、条件查询 3、分组查询 &#xff08;1&#xff09;聚合函数 ① count函数 ② max min avg sum函数 &…

【Tkinter系列02/5】界面初步和布局

本文是系列文章第二部分。前文见&#xff1a;【Tkinter系列01/5】界面初步和布局_无水先生的博客-CSDN博客 说明 一般来说&#xff0c;界面开发中&#xff0c;如果不是大型的软件&#xff0c;就不必用QT之类的实现&#xff0c;用Tkinter已经足够&#xff0c;然而即便是Tkinter规…

基于大数据+django+mysql的银行信用卡用户的数仓系统

系统阐述的是银行信用卡用户的数仓系统的设计与实现&#xff0c;对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计&#xff0c;描述&#xff0c;实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体架构…

gitcode中删除已有的项目

镜像地址&#xff1a; https://www.jianshu.com/p/504c1418adb7?v1693021320653 扩展阅读 如何在GitLab中删除一个项目 https://www.codenong.com/cs106866762/ 简介&#xff1a; 如何在GitLab中删除一个项目 最近GIT上建了太多项目。想清一下&#xff0c;就在网上查了查…

opencv-答题卡识别判卷

#导入工具包 import numpy as np import argparse import imutils import cv2# 设置参数 ap argparse.ArgumentParser() ap.add_argument("-i", "--image", requiredTrue,help"path to the input image") args vars(ap.parse_args())# 正确答案…

【动手学深度学习】--18.图像增广

文章目录 图像增广1.常用的图像增广方法1.1翻转和裁剪1.2改变颜色1.3结合多种图像增广方法 2.使用图像增广进行训练3.训练 图像增广 官方笔记&#xff1a;图像增广 学习视频&#xff1a;数据增广【动手学深度学习v2】 图像增广在对训练图像进行一系列的随机变化之后&#xff…

实验八 网卡驱动移植

【实验目的】 掌握 Linux 内核配置的基本方法&#xff0c;完成对网卡驱动、NFS 等相关功能的配置 【实验环境】 ubuntu 14.04 发行版FS4412 实验平台交叉编译工具&#xff1a;arm-none-linux-gnueabi- 【注意事项】 实验步骤中以“$”开头的命令表示在 ubuntu 环境下执行&…

21.2 CSS 三大特性与页面布局

1. 开发者工具修改样式 使用开发者工具修改样式, 操作步骤如下: * 1. 打开开发者工具: 在浏览器中右键点击页面, 然后选择检查或者使用快捷键(一般是 F12 或者 CtrlShiftI)来打开开发者工具.* 2. 打开样式编辑器: 在开发者工具中, 找到选项卡或面板, 一般是Elements或者Elemen…

最新AI系统ChatGPT程序源码/微信公众号/H5端+搭建部署教程+完整知识库

一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01…

不系安全带抓拍自动识别

不系安全带抓拍自动识别系统通过yolo系列算法框架模型利用高清摄像头&#xff0c;不系安全带抓拍自动识别算法对高空作业场景进行监控&#xff0c;当检测到人员未佩戴安全带时会自动抓拍并进行告警记录。YOLO系列算法是一类典型的one-stage目标检测算法&#xff0c;其利用ancho…