kafka-clients之max.block.ms

max.block.ms 是 Kafka 客户端Producer配置中的一个参数,决定了客户端阻塞的最大时间。当生产者调用某些方法(如 send() )时,如果客户端在内部遇到某些资源(如元数据或可用的缓冲区空间)不可用,可能会发生阻塞。这时,max.block.ms 限定了可以阻塞的最长时间,超过这个时间客户端会抛出 TimeoutException

以下是 max.block.ms 在 Kafka 不同场景下的作用:

生产者 (Producer)

  • 在生产消息时,生产者会等待元数据的获取和缓冲区空间的可用性。如果元数据不可用(例如:没有找到分区的 Leader),或者缓冲区已满(取决于 buffer.memorybatch.size 的设置),生产者会阻塞。
  • 默认值:60000 毫秒(即 60 秒)
  • 使用场景:当生产者发消息时,如果长时间没有可用的元数据或可用的缓冲区空间,阻塞的时间超过了 max.block.ms 设置的值,则会抛出 TimeoutException

参数配置要点:

  • 如果消息流量大,且 buffer.memorybatch.size 设置较小,生产者更可能遇到缓冲区耗尽的情况,导致阻塞时间更长。这时可以增大 max.block.ms 的值来避免过早抛出异常,但要权衡延迟。
  • max.block.ms 通常和其他参数如 retries, linger.ms, request.timeout.ms 等结合考虑,以确保客户端的稳定性和高可用性。

Q&A

问题1

官方文档说block.on.buffer.full=true,则max.block.ms=Long的最大值,并且不会遵守metadata.fetch.timeout.ms。如果阻塞了,那么元数据fetch请求就永远不超时了吗?

是的,如果你设置了 block.on.buffer.full=true,那么 max.block.ms 的值会自动设置为 Long.MAX_VALUE,且在这种情况下,metadata.fetch.timeout.ms 不再适用,这意味着在元数据获取(metadata fetch)阶段不会发生超时,即使服务器长时间不响应。

详细解释:
  • block.on.buffer.full=true 时,Kafka 生产者在缓冲区(buffer)满了的情况下,会一直阻塞,等待空间释放,而不是立即抛出 TimeoutException。这和 max.block.ms 参数有直接关联,因为 max.block.ms 限制了生产者在等待缓冲区可用或等待元数据的过程中能阻塞的最长时间。
  • 设置 block.on.buffer.full=true 会让生产者在缓冲区满了的情况下永远阻塞,除非有可用空间。因此,max.block.ms 被设置为 Long.MAX_VALUE,意味着理论上可以无限期阻塞,而不会因为等待超时。
  • 另外一个重要的影响是 **metadata.fetch.timeout.ms**** 不再适用**。通常情况下,metadata.fetch.timeout.ms 定义了获取 Kafka 集群元数据的超时时间。如果在指定的超时内未能获取到元数据,生产者会抛出 TimeoutException。但在 block.on.buffer.full=true 的情况下,元数据获取请求也会一直阻塞,没有超时时间限制
是否永远不超时?

实际上,在这种情况下,元数据获取请求确实不会因为超时而失败。生产者会无限期地等待 Kafka 集群的响应,无论是缓冲区是否满,还是元数据是否可用。生产者会始终尝试等待元数据的返回,直到有响应为止。

不过,虽然理论上可以无限期等待,但从应用层面来说,这可能会导致生产者卡住而无法处理消息。所以,如果你设置 block.on.buffer.full=true,一定要确保有合适的监控和故障恢复机制来应对潜在的长时间阻塞。

实际应用中:

设置 block.on.buffer.full=true 并不常见,因为这种配置会带来潜在的阻塞风险。大多数情况下,更建议使用 max.block.ms 来设置合理的超时限制,以避免生产者被长时间阻塞而影响应用性能和稳定性。

问题2

那么阻塞期间是不是有风险反压应用程序线程池,比如:tomcat线程池会被打满?

是的,在阻塞期间确实存在将应用程序线程池(如 Tomcat 线程池)打满的风险,这特别是在 Kafka 生产者发送消息时的阻塞行为长时间得不到解决的情况下。如果生产者的 send() 方法被阻塞,并且运行在应用程序线程中(例如 Tomcat 的线程池),那么这些线程会因为等待 Kafka 客户端而无法处理新的请求,最终可能会导致线程池被耗尽,进而影响整个应用程序的性能和可用性。

具体的风险场景:
  1. Kafka 生产者阻塞
    • 如果 Kafka 生产者因为缓冲区已满或无法获取元数据而阻塞,且阻塞的时间较长(受 max.block.ms 控制),那么运行该代码的线程会一直处于等待状态,无法返回或处理其他任务。
    • 例如,假设你的 Web 应用通过 HTTP 接收请求并使用 Kafka 生产者将消息发送到 Kafka。在这种情况下,如果生产者的 send() 方法阻塞,该 HTTP 请求的处理线程会一直处于等待状态,无法完成处理。
  2. Tomcat 线程池被打满
    • 假设你的 Tomcat 线程池配置为 200 个线程,而 Kafka 生产者因为缓冲区已满(或其他问题)阻塞了这些线程。如果所有 200 个线程都被阻塞,Tomcat 就无法处理新的请求。新的请求只能排队等待,直到有线程释放。
    • 如果 Kafka 的阻塞持续时间较长,Tomcat 线程池可能会被打满,导致请求超时甚至应用服务不可用。
如何缓解阻塞导致的线程池打满风险:
  1. **设置合理的 ****max.block.ms**
    • 确保 max.block.ms 设置了一个合理的时间限制,例如几秒到几十秒,避免无限期阻塞。这样当 Kafka 生产者无法及时发送消息时,可以在 max.block.ms 超时后抛出 TimeoutException,让应用有机会进行错误处理或降级。
  2. 异步处理 Kafka 生产者操作
    • 尽量避免在 Tomcat 等应用程序的核心请求处理线程中直接调用 Kafka 生产者的 send() 方法。可以使用异步方式(如通过 send() 的回调函数)来处理 Kafka 消息的发送。这样,即使 Kafka 阻塞了生产者,应用程序的线程池也不会因此被阻塞。
    • 示例:使用 Kafka 生产者的异步 send() 调用,而不是同步等待 get()
producer.send(record, (metadata, exception) -> {
    if (exception != null) {
        // 错误处理逻辑
    } else {
        // 处理成功发送的元数据
    }
});
  1. 使用独立的线程池处理 Kafka 逻辑
    • 考虑使用单独的线程池或异步执行框架(如 Java 的 ExecutorService 或 Spring 的 @Async 注解)处理 Kafka 消息发送逻辑,将 Kafka 生产者的阻塞与应用的核心线程池(如 Tomcat 线程池)隔离开。
    • 这样,即使 Kafka 生产者阻塞了,也只是影响独立的线程池,不会影响到处理 HTTP 请求的核心线程池。
  2. 增加 Kafka 缓冲区大小
    • 调整 Kafka 生产者的缓冲区设置,如增加 buffer.memory 或合理调整 batch.size,以减少缓冲区满导致的阻塞。这样可以减轻阻塞的频率,缓解对线程池的影响。
示例:将 Kafka 生产者放到独立线程池中
ExecutorService kafkaExecutor = Executors.newFixedThreadPool(10);

kafkaExecutor.submit(() -> {
    try {
        producer.send(record).get();  // 异步发送,并在独立线程池中处理
    } catch (Exception e) {
        // 处理发送失败
    }
});
总结:

如果不加以控制,Kafka 生产者的阻塞行为(如在 send() 中阻塞)确实可能反压应用程序线程池,特别是像 Tomcat 这样的线程池可能会被打满,影响应用服务的可用性。为了解决这个问题,可以通过合理配置 max.block.ms、使用异步消息发送、引入独立的线程池等方式来防止 Kafka 阻塞问题扩散到应用的关键线程池。

问题3

即使我使用sendAsync方法也一样会阻塞吗?

是的,即使你使用了 sendAsync 方法(即 Kafka 生产者的 send() 方法并附带回调函数进行异步处理),阻塞问题仍可能发生。原因是,send() 方法并不是真正的完全异步操作——它仍然可能会在某些场景下阻塞,比如:

1. 缓冲区已满时的阻塞
  • Kafka 生产者在异步 send() 时,会先把消息写入内部的缓冲区(由 buffer.memory 控制)。如果缓冲区已满,send() 操作会因为等待缓冲区空间释放而阻塞。
  • 即使你使用了 send() 的异步版本,这个操作本质上还是会等待可用的缓冲区空间来写入数据,因此仍然可能发生阻塞,特别是当你大量发送消息且 buffer.memory 较小时。
2. 元数据不可用时的阻塞
  • 当 Kafka 生产者在 send() 时,发现缺少目标分区的元数据时,它会尝试向 Kafka 集群请求元数据。这一请求通常是同步操作,如果元数据获取失败,生产者会阻塞等待,直到元数据可用为止。
  • 如果 Kafka 集群有问题(例如分区不可用或元数据请求超时),即使是异步的 send() 也会因为缺少元数据而导致阻塞。
3. max.block.ms 的控制
  • Kafka 的 send() 操作在以上两种情况(缓冲区满或元数据获取)中会受到 max.block.ms 参数的影响。如果阻塞时间超过了 max.block.ms 的设置值,Kafka 会抛出 TimeoutException
  • 但是在 max.block.ms 时间内,异步 send() 仍然可能阻塞,因为它依赖于缓冲区和元数据的可用性。
异步 send() 的行为:

虽然 send() 是非阻塞的,它确实会立即返回一个 Future<RecordMetadata> 对象,并且执行后的结果会在回调中处理,但在底层:

  • 缓冲区写入元数据获取 仍可能造成阻塞,这两点不会因为你使用异步 API 而避免。
如何缓解这种情况?
  1. **增大 ****buffer.memory**
    • 如果阻塞是由于缓冲区已满导致的,可以通过增加生产者的 buffer.memory 来增加可用的缓冲区空间,从而减少因为缓冲区满导致的阻塞。
  2. **调整 ****batch.size**
    • 通过调整 batch.size,可以影响消息的批量发送行为。合理的 batch.size 设置可以使生产者更高效地批量发送消息,减少发送次数,从而减少阻塞。
  3. 使用异步回调函数和错误处理
    • 虽然 send() 本身可能阻塞,但你可以使用回调函数来处理异步操作结果,并且在发生异常(如 TimeoutException)时及时进行错误处理和降级。
    • 例如,检测到缓冲区满时,可以采取降级措施或记录日志:
producer.send(record, (metadata, exception) -> {
    if (exception != null) {
        // 处理异常,例如 TimeoutException
        log.error("Error sending message", exception);
    } else {
        // 处理成功发送的元数据
        log.info("Message sent successfully: " + metadata.offset());
    }
});
  1. 并行批量处理
    • 如果发送消息的频率较高,可以考虑将消息批量化并异步发送,这样可以减少生产者的发送请求次数,缓解缓冲区压力。
    • 例如,将多条消息放入一个批次中进行异步发送,而不是单条发送:
List<ProducerRecord<String, String>> records = // 构建消息列表;
for (ProducerRecord<String, String> record : records) {
producer.send(record);
}
  1. 避免生产者逻辑和主线程直接绑定
    • 你可以将 Kafka 生产者操作移到一个独立的工作线程或线程池中执行,这样即使 send() 被阻塞,也不会占用主线程(如 Tomcat 线程池),从而避免打满应用程序的主线程池。
ExecutorService kafkaExecutor = Executors.newFixedThreadPool(10);
kafkaExecutor.submit(() -> {
    producer.send(record);
});
总结:

即使你使用了异步的 send() 方法,Kafka 生产者仍然可能由于缓冲区已满或元数据不可用而发生阻塞。这种阻塞可以通过设置 max.block.ms、调整 buffer.memorybatch.size 等方式来缓解。此外,异步调用的阻塞不会发生在主线程,但如果不加控制,也可能导致线程池资源被耗尽。因此,合理地配置 Kafka 参数并且将生产者操作放入独立线程池,是减轻阻塞影响的有效手段。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/918572.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机毕业设计 | SpringBoot+vue城镇保障性住房管理 公租房系统(附源码+论文)

1&#xff0c;绪论 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理城镇保障性住房管理系统的相关信…

Cherno OpenGL(28 ~ 33)

批量渲染-介绍 在这里我们将在一个drawcall打包多个几何体。即 batch geometry。 我们在这里将聚焦于2d渲染&#xff0c;我们如何渲染一堆2d的quads或者说rectangles呢&#xff1f; 一种情况是比如一个2d游戏有很多个tile组成&#xff0c;要去渲染这些tile&#xff1b;另一种…

物联网——UNIX时间戳、BKP备份寄存器、RTC时钟

RTC时钟 Unix时间戳 UTC/GMT 时间戳转换 时间戳转换 BKP简介 RTC框图 RTC基本结构 硬件供电电路 RTC操作注意事项 接线图&#xff08;读写备份寄存器和实时时钟&#xff09;

EPANET供水系统水力和水质模拟,管网系统水龄模拟、余氯模拟、消毒副产物模拟、失效分析、弹性分析等

EPANET 是美国环保综述开发的用于供水系统水力和水质模拟的软件工具&#xff0c;可以视作是SWMM模型&#xff08;主要用于排水系统&#xff09;的姊妹软件。它主要用于供水系统的设计、操作和分析&#xff0c;适用于包括城市、工业区和农村地区各种规模的供水系统分析。在水力模…

51单片机基础04 LCD1602时序;Proteus仿真单片机、总线、网络标号等;

目录 一、LCD显示字符 1、写指令 &#xff08;1&#xff09;、LCD状态配置 &#xff08;2&#xff09;、显示开关与光标 2、写数据 &#xff08;1&#xff09;、设置地址 &#xff08;2&#xff09;、设置数据 3、初始化代码 &#xff08;1&#xff09;、初始化流程 …

OceanBase 闪回查询

前言 在OB中&#xff0c;drop表可以通过 回收站 或者 以往的备份恢复来还原单表。当delete数据时&#xff0c;由于delete操作的对象不会进入回收站&#xff0c;此时需要通过闪回查询功能查看delete的数据&#xff0c;以便后续恢复 本次实验版本为 OceanBase 4.2.1.8&#xff0…

小版本大不同 | Navicat 17 新增 TiDB 功能

近日&#xff0c;Navicat 17 迎来了小版本更新。此次版本新增了对 PingCap 公司的 TiDB 开源分布式关系型数据库的支持&#xff0c;进一步拓展了 Navicat 的兼容边界。即日起&#xff0c;Navicat 17 所有用户可免费升级至最新版本&#xff0c;通过 Navicat 工具实现 TiDB 数据库…

SpringBoot开发——SpringBoot3.3 实现停止/重启定时任务

文章目录 一、运行效果二、项目结构三、功能实现1、项目依赖配置(pom.xml)2、配置文件(application.yaml)3、创建 TaskSchedulerProperties 配置类4、定时任务的实现5、任务管理器的实现6、控制器的实现7、启动应用程序类8、视图控制器9、前端页面(Thymeleaf + Bootstrap)…

【大数据技术基础 | 实验十一】Hive实验:新建Hive表

文章目录 一、实验目的二、实验要求三、实验原理四、实验环境五、实验内容和步骤&#xff08;一&#xff09;启动Hive&#xff08;二&#xff09;创建表&#xff08;三&#xff09;显示表&#xff08;四&#xff09;显示表列&#xff08;五&#xff09;更改表&#xff08;六&am…

c++ 后端

基础知识 1. 指针、引用2. 数组3. 缺省参数4. 函数重载5. 内联函数6. 宏7. auto8. const9. 类和对象10. 类的6个默认成员函数11. 初始化列表12. this指针13. C/C的区别14. C 三大特性15. 结构体内存对齐规则16. explicit17. static18. 友元类、友元函数19. 内部类20. 内存管理&…

[C++]:C++11(一)

1. 统一列表初始化 1.1 C11 之前的初始化方式 在 C11 标准中&#xff0c;引入了一个非常实用且强大的特性——统一列表初始化&#xff08;Uniform Initialization&#xff09;&#xff0c;它为我们在初始化各种类型的对象时提供了一种统一且方便的语法形式&#xff0c;极大地…

基于的图的异常检测算法OddBall

OddBall异常检测算法出自2010年的论文《OddBall: Spotting Anomalies in Weighted Graphs》&#xff0c;它是一个在加权图(weighted graph)上检测异常点的算法&#xff0c;基本思路为计算每一个点的一度邻域特征&#xff0c;然后在整个图上用这些特征拟合出一个函数&#xff0c…

基于AOA算术优化的KNN数据聚类算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于AOA算术优化的KNN数据聚类算法matlab仿真。通过AOA优化算法&#xff0c;搜索最优的几个特征数据&#xff0c;进行KNN聚类&#xff0c;同时对比不同个数特征下…

【模块一】kubernetes容器编排进阶实战之CoreDNS的介绍与使用

CoreDNS进阶 CoreDNS进阶-简介 DNS组件历史版本有skydns、kube-dns和coredns三个&#xff0c;k8s 1.3版本之前使用skydns&#xff0c;之后的版本到1.17及之间的版本使用kube-dns&#xff0c; 1.18开始目前主要使用coredns&#xff0c;DNS组件用于解析k8s集群中service name所对…

栈Stack和队列Queue

目录 一、栈 &#xff08;1&#xff09;用数组实现 &#xff08;2&#xff09;用单链表实现 &#xff08;3&#xff09;用标注尾结点的单链表实现 &#xff08;4&#xff09;用双向链表实现 2、栈的实际应用 &#xff08;1&#xff09;改变元素的序列 &#xff08;2&am…

ES6标准-Promise对象

目录 Promise对象的含义 Promise对象的特点 Promise对象的缺点 Promise对象的基本用法 Promise对象的简单例子 Promise新建后就会立即执行 Promise对象回调函数的参数 Promise参数不会中断运行 Promise对象的then方法 Promise对象的catch()方法 Promise状态为resolv…

【隐私计算】隐私计算的应用场景探索(大模型隐私计算、隐私数据存储计算、Web3、隐私物联网等)

1. 背景分析 隐私计算作为一种实现“原始数据不出域&#xff0c;可用不可见”的数据流通价值的关键技术&#xff0c;经历了2020-2023年的高光时刻&#xff0c;却在2024年骤然走向低谷。从各种渠道了解到一些业内曾经风光无两的隐私计算公司都有不同程度的裁员。几乎一夜之间&am…

【大数据学习 | flume】flume的概述与组件的介绍

1. flume概述 Flume是cloudera(CDH版本的hadoop) 开发的一个分布式、可靠、高可用的海量日志收集系统。它将各个服务器中的数据收集起来并送到指定的地方去&#xff0c;比如说送到HDFS、Hbase&#xff0c;简单来说flume就是收集日志的。 Flume两个版本区别&#xff1a; ​ 1&…

【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法

【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法 目录 文章目录 【大语言模型】ACL2024论文-16 基于地图制图的罗马尼亚自然语言推理语料库的新型课程学习方法目录摘要&#xff1a;研究背景&#xff1a;问题与挑战&#xff1a;如何解…

数据库审计工具--Yearning 3.1.9普民的使用指南

1 页面登录 登录地址:18000 &#xff08;不要勾选LDAP&#xff09; 2 修改用户密码 3 DML/DDL工单申请及审批 工单申请 根据需要选择【DML/DDL/查询】中的一种进行工单申请 填写工单信息提交SQL检测报错修改sql语句重新进行SQL检测&#xff0c;如检测失败可以进行SQL美化后…