软间隔支持向量机

软间隔支持向量机

​ 我们先直接给出软间隔支持向量机的形式:
P = min ⁡ ω , b , ζ 1 2 ∥ ω ∥ 2 2 − C ∑ i = 1 m ζ i s . t . y i ( ω x i + b ) ≥ 1 − ζ i , i = 1 , 2 , 3.. m ζ i ≥ 0 , i = 1 , 2 , 3.. m P = \min_{\omega,b,\zeta} \frac{1}{2}\Vert \omega \Vert_2^2 - C\sum_{i=1}^m\zeta_i\\ s.t. y_i(\omega x_i+b) \geq 1-\zeta_i,i=1,2,3..m\\ \zeta_i \geq 0,i=1,2,3..m P=ω,b,ζmin21ω22Ci=1mζis.t.yi(ωxi+b)1ζi,i=1,2,3..mζi0,i=1,2,3..m

​ 线性可分的对立面一定是线性不可分,这个时候无论如何改变超平面与支持向量,数据都无法从线性可分转为线性不可分。但是对于完全杂乱的数据来说,我们往往还会遇到一种情况就是数据中存在一小部分的特异点而导致数据线性不可分,如图所示:image-20241112221025217

​ 在这种情况下如果直接选择线性不可分的算法反而会让我们的问题更复杂,同时也可能导致过拟合的问题,那么我们不妨放松一定的硬间隔限制,允许错误分类。或者说,允许尽可能少的错误分类,从而获得更好的泛化效果。

​ 对于正分类点的错误分类来说,我们可以划分为三种,如图上Case1,Case2,Case3三个点,分别代表了允许特异点进入超平面与正支持向量之间,允许特异点进入超平面与负支持向量之间,允许特异点进入负分类区间。

image-20241112221901720

​ 针对三种情况我们分别分析,同时引入松弛变量。引入松弛变量的目的就是为了放松硬间隔的区间限制,让原本只能出现在过支持向量与超平面平行的平面正侧的点可以出现在其他地方,为了方便分析我们假设最优超平面如图所示 ω X + b = 0 \omega X+b=0 ωX+b=0保持不动,研究如何调整限制条件,以允许线性不可分样本可以存在。

1. Case1

​ 我们将Case1的特征向量代入超平面得到 ω X c + b = P \omega X_c+b=P ωXc+b=P,显然 0 < P < 1 0<P<1 0<P<1,此时 0 ≤ Y c ( ω X c + b ) < 1 0\leq Y_c(\omega X_c+b)<1 0Yc(ωXc+b)<1

​ 原来我们要求正分类点在正支持向量右上方的时候限制条件为: Y c ( ω X c + b ) ≥ 1 Y_c(\omega X_c+b)\geq 1 Yc(ωXc+b)1

​ 将Case1的点纳入限制范围,则限制条件变为 Y c ( ω X c + b ) ≥ 0 Y_c(\omega X_c+b) \geq 0 Yc(ωXc+b)0

​ 我们假设松弛变量 0 ≤ ζ ≤ 1 0\leq \zeta \leq 1 0ζ1,那么限制条件就可以转换为: Y c ( ω X c + b ) ≥ 1 − ζ Y_c(\omega X_c+b) \geq 1-\zeta Yc(ωXc+b)1ζ

​ 此时我们允许误分类点进入正支持向量平面与超平面之间

2. Case2

​ 我们将Case2的特征向量代入超平面得到 ω X c + b = P \omega X_c+b=P ωXc+b=P,显然 − 1 < P < 0 -1<P<0 1<P<0,此时 − 1 ≤ Y c ( ω X c + b ) < 0 -1\leq Y_c(\omega X_c+b)<0 1Yc(ωXc+b)<0

​ 原来我们要求正分类点在超平面右上方的时候限制条件为: Y c ( ω X c + b ) ≥ 0 Y_c(\omega X_c+b) \geq 0 Yc(ωXc+b)0

​ 将Case2的点纳入限制范围,则限制条件变为 Y c ( ω X c + b ) ≥ − 1 Y_c(\omega X_c+b) \geq -1 Yc(ωXc+b)1

​ 我们假设松弛变量 0 ≤ ζ ≤ 2 0\leq \zeta \leq 2 0ζ2,那么限制条件就可以转换为: Y c ( ω X c + b ) ≥ 1 − ζ Y_c(\omega X_c+b) \geq 1-\zeta Yc(ωXc+b)1ζ

​ 此时我们允许误分类点进入负支持向量平面与超平面之间

3. Case3

​ 我们将Case1的特征向量代入超平面得到 ω X c + b = P \omega X_c+b=P ωXc+b=P,显然 P < − 1 P<-1 P<1,此时$ Y_c(\omega X_c+b)<-1$

​ 原来我们要求正分类点在负支持向量右上方平面的时候限制条件为: Y c ( ω X c + b ) ≥ − 1 Y_c(\omega X_c+b) \geq -1 Yc(ωXc+b)1

​ 我们假设松弛变量$0\leq \zeta ,那么限制条件就可以转换为: ,那么限制条件就可以转换为: ,那么限制条件就可以转换为:Y_c(\omega X_c+b) \geq 1-\zeta$

​ 此时我们允许误分类点进入负分类区间

4. 限制松弛变量

​ 之前的内容我们是从已经引入松弛变量的角度分析为什么在模型中要求 ζ i ≥ 0 \zeta_i \geq 0 ζi0,现在我们来分析松弛变量是如何引入目标函数的。

​ 显然我们现在对每一个特异点都设置了一个松弛变量 ζ i \zeta_i ζi使得原来的模型能够容纳这些错误的情况,但是如果不对这种放松进行惩罚,在面对线性不可分的数据时,模型可以随意让样本点可以随意靠近或穿过超平面。

​ 样本点随意靠近或穿过超平面,这就忽略了我们不同类别的数据点到这个超平面的最小距离(即间隔)最大这个核心目标。因为不加限制的话,会导致几何间隔 2 ∥ ω ∥ \frac{2}{\Vert \omega \Vert} ω2不断的变小。

​ 那为什么会导致几何间隔 2 ∥ ω ∥ \frac{2}{\Vert \omega \Vert} ω2不断的变小呢?

​ 假设我们已经有超平面可以将两类数据大部分分开,则正负支持向量之间的间隔恰好为 2 ∥ ω ∥ \frac{2}{\Vert \omega \Vert} ω2,当我们不惩罚 ζ i \zeta_i ζi,并且想要把这个数据点也正确分类。为了使 y i ( ω x i + b ) ≥ 1 − ζ i ζ i ≥ 0 y_i(\omega x_i+b) \geq 1-\zeta_i \quad \zeta_i \geq 0 yi(ωxi+b)1ζiζi0成立,我们不得不增大 ζ i \zeta_i ζi,同时调整超平面。调整超平面可能就会导致我们的几何间隔变小,这会与我们间隔最大化这个问题相违背。所以必须增加惩罚。我们为每一个松弛变量添加惩罚,同时设置一个参数可以控制惩罚的力度,进而我们就得到了:
P ∗ = max ⁡ 1 ∥ ω ∥ ∥ + C ∑ i = 1 N ζ i s . t . y i ( ω x i + b ) ≥ 1 − ζ i , i = 1 , 2 , 3.. N ζ i ≥ 0 , i = 1 , 2 , 3.. N P^* = \max_{} \frac{1}{\Vert \omega \Vert}\Vert + C\sum_{i=1}^N\zeta_i\\ s.t. y_i(\omega x_i+b) \geq 1-\zeta_i,i=1,2,3..N\\ \zeta_i \geq 0,i=1,2,3..N P=maxω1+Ci=1Nζis.t.yi(ωxi+b)1ζi,i=1,2,3..Nζi0,i=1,2,3..N
​ 我们的问题其实转为了在 ω \omega ω和松弛变量 ζ \zeta ζ 之间寻求一个平衡,而C是来控制这个平衡的程度。最终我们将问题转为我们一开始的最小化问题P。

5. 求解P

​ 根据拉格朗如对偶法构建拉格朗日函数:
L ( ω , b , ζ , α , μ ) = 1 2 ∥ ω ∥ 2 2 + C ∑ i = 1 N ζ i − ∑ i = 1 m α i [ y i ( ω x i + b ) − 1 + ζ i ] − ∑ i = 1 m μ i ζ i a n d μ i ≥ 0 , ζ i ≥ 0 L(\omega,b,\zeta,\alpha,\mu) =\frac{1}{2}\Vert \omega \Vert_2^2 +C\sum_{i=1}^N\zeta_i-\sum_{i=1}^m\alpha_i[y_i(\omega x_i+b) - 1+\zeta_i]-\sum_{i=1}^m \mu_i\zeta_i \\and \\\mu_i \geq0,\zeta_i \geq 0 L(ω,b,ζ,α,μ)=21ω22+Ci=1Nζii=1mαi[yi(ωxi+b)1+ζi]i=1mμiζiandμi0,ζi0

​ 则优化的目标函数为: min ⁡ ω , b , ζ max ⁡ μ i , ζ i L ( ω , b , ζ , α , μ ) \min_{\omega,b,\zeta}\max_{\mu_i,\zeta_i} L(\omega,b,\zeta,\alpha,\mu) minω,b,ζmaxμi,ζiL(ω,b,ζ,α,μ)

​ 符合Slater条件转为对偶问题: max ⁡ μ i , ζ i min ⁡ ω , b , ζ L ( ω , b , ζ , α , μ ) \max_{\mu_i,\zeta_i}\min_{\omega,b,\zeta} L(\omega,b,\zeta,\alpha,\mu) maxμi,ζiminω,b,ζL(ω,b,ζ,α,μ)

​ 先求最小化问题:
∂ L ∂ w = 0    ⇒ w = ∑ i = 1 m α i y i x i ∂ L ∂ b = 0    ⇒ ∑ i = 1 m α i y i = 0 ∂ L ∂ ξ = 0    ⇒ C − α i − μ i = 0 \frac{\partial L}{\partial w} = 0 \;\Rightarrow w = \sum\limits_{i=1}^{m}\alpha_iy_ix_i \\ \frac{\partial L}{\partial b} = 0 \;\Rightarrow \sum\limits_{i=1}^{m}\alpha_iy_i = 0 \\ \frac{\partial L}{\partial \xi} = 0 \;\Rightarrow C- \alpha_i - \mu_i = 0 wL=0w=i=1mαiyixibL=0i=1mαiyi=0ξL=0Cαiμi=0
​ 代入消去 ω , b \omega,b ω,b
L ( ω , b , ζ , α , μ ) = ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y i y j x i T x j L(\omega,b,\zeta,\alpha,\mu) = \sum\limits_{i=1}^{m}\alpha_i - \frac{1}{2}\sum\limits_{i=1,j=1}^{m}\alpha_i\alpha_jy_iy_jx_i^Tx_j L(ω,b,ζ,α,μ)=i=1mαi21i=1,j=1mαiαjyiyjxiTxj
​ 仔细观察这个式子会发现其实与支持向量机最终得到的公式是一样的,但是不同的是约束条件:
max ⁡ α ∑ i = 1 m α i − 1 2 ∑ i = 1 , j = 1 m α i α j y i y j x i T x j s . t .    ∑ i = 1 m α i y i = 0 C − α i − μ i = 0 α i ≥ 0    ( i = 1 , 2 , . . . , m ) μ i ≥ 0    ( i = 1 , 2 , . . . , m ) \max _{\alpha} \sum\limits_{i=1}^{m}\alpha_i - \frac{1}{2}\sum\limits_{i=1,j=1}^{m}\alpha_i\alpha_jy_iy_jx_i^Tx_j \\ s.t. \; \sum\limits_{i=1}^{m}\alpha_iy_i = 0 \\ C- \alpha_i - \mu_i = 0 \\\alpha_i \geq 0 \;(i =1,2,...,m) \\\mu_i \geq 0 \;(i =1,2,...,m) αmaxi=1mαi21i=1,j=1mαiαjyiyjxiTxjs.t.i=1mαiyi=0Cαiμi=0αi0(i=1,2,...,m)μi0(i=1,2,...,m)

对于三个约束来说代入消去 μ \mu μ可以得到唯一一个约束也就是: 0 ≤ α i ≤ C 0 \leq \alpha_i \leq C 0αiC,然后我们就可以通过SMO算法来解出最终的 α 和 b \alpha 和b αb

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/917633.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

html + css 自适应首页布局案例

文章目录 前言一、组成二、代码1. css 样式2. body 内容3.全部整体 三、效果 前言 一个自适应的html布局 一、组成 整体居中&#xff0c;宽度1200px&#xff0c;小屏幕宽度100% 二、代码 1. css 样式 代码如下&#xff08;示例&#xff09;&#xff1a; <style>* {…

深入List集合:ArrayList与LinkedList的底层逻辑与区别

目录 一、前言 二、基本概念 三、相同之处 四、不同之处 五、ArrayList 底层 六、LinkedList 底层 七、ArrayList 应用场景 八、LinkedList 应用场景 九、ArrayList和LinkedList高级话题 十、总结 一、前言 在Java集合的广阔舞台上&#xff0c;ArrayList与LinkedLis…

Vue3中实现插槽使用

目录 一、前言 二、插槽类型 三、示例 四、插槽的分类实现 1. 基本插槽 2. 命名插槽 3. 默认插槽内容 4. 作用域插槽&#xff08;Scoped Slots&#xff09; 5. 多插槽与具名插槽组合 一、前言 在 Vue 3 中&#xff0c;插槽&#xff08;Slot&#xff09;用于实现组件的内…

海思3403对RTSP进行目标检测

1.概述 主要功能是调过live555 testRTSPClient 简单封装的rtsp客户端库&#xff0c;拉取RTSP流&#xff0c;然后调过3403的VDEC模块进行解码&#xff0c;送个NPU进行目标检测&#xff0c;输出到hdmi&#xff0c;这样保证了开发没有sensor的时候可以识别其它摄像头的视频流&…

【Java知识】Java性能测试工具JMeter

一文带你了解什么是JMeter 概述JMeter的主要功能&#xff1a;JMeter的工作原理&#xff1a;JMeter的应用场景&#xff1a;JMeter的组件介绍&#xff1a; 实践说明JMeter实践基本步骤&#xff1a;JMeter实践关键点&#xff1a; JMeter支持哪些参数化技术&#xff1f;常见插件及其…

Github客户端工具github-desktop使用教程

文章目录 1.客户端工具的介绍2.客户端工具使用感受3.仓库的创建4.初步尝试5.本地文件和仓库路径5.1原理说明5.2修改文件5.3版本号的说明5.4结合码云解释5.5版本号的查找 6.分支管理6.1分支的引入6.2分支合并6.3创建测试仓库6.4创建测试分支6.5合并分支6.6合并效果查看6.7分支冲…

Flutter中的Material Theme完全指南:从入门到实战

Flutter作为一款热门的跨平台开发框架&#xff0c;其UI组件库Material Design深受开发者喜爱。本文将深入探讨Flutter Material Theme的使用&#xff0c;包括如何借助Material Theme Builder创建符合产品需求的主题风格。通过多个场景和代码实例&#xff0c;让你轻松掌握这一工…

EWM 打印

目录 1 简介 2 后台配置 3 主数据 4 业务操作 1 简介 打印即输出管理&#xff08;output management&#xff09;利用“条件表”那一套理论实现。而当打印跟 EWM 集成到一起时&#xff0c;也需要利用 PPF&#xff08;Post Processing Framework&#xff09;那一套理论。而…

2024 同一个网段,反弹shell四种方法【linux版本】bash、python、nc、villian反弹shell图解步骤

实验环境准备&#xff08;同一个网段下&#xff0c;我是桥接的虚拟机&#xff09; 一、bash反弹shell 二、python反弹shell 三、nc反弹shell 四、villain反弹shell 实验环境准备&#xff08;同一个网段下&#xff0c;我是桥接的虚拟机&#xff09; 一台kali的linux(攻击者)…

ubuntu 安装kafka-eagle

上传压缩包 kafka-eagle-bin-2.0.8.tar.gz 到集群 /root/efak 目录 cd /root/efak tar -zxvf kafka-eagle-bin-2.0.8.tar.gz cd /root/efak/kafka-eagle-bin-2.0.8 mkdir /root/efakmodule tar -zxvf efak-web-2.0.8-bin.tar.gz -C /root/efakmodule/ mv /root/efakmodule/efak…

算法沉淀一:双指针

目录 前言&#xff1a; 双指针介绍 对撞指针 快慢指针 题目练习 1.移动零 2.复写零 3.快乐数 4.盛水最多的容器 5.有效三角形的个数 6.和为s的两个数 7.三数之和 8.四数之和 前言&#xff1a; 此章节介绍一些算法&#xff0c;主要从leetcode上的题来讲解&#xff…

安全机制解析:深入SELinux与权限管理

Linux内核作为一个高自由度和优秀性能的操作系统核心&#xff0c;基于安全需求提供了完善的安全机制。内核安全机制不仅限于保护个人数据&#xff0c;还包括对运行环境和系统体系的线程化操作。本文将全方位分析Linux内核安全机制&#xff0c;以SELinux为主要代表&#xff0c;选…

对接阿里云实人认证

对接阿里云实人认证-身份二要素核验接口整理 目录 应用场景 接口文档 接口信息 请求参数 响应参数 调试 阿里云openApi平台调试 查看调用结果 查看SDK示例 下载SDK 遇到问题 本地调试 总结 应用场景 项目有一个提现的场景&#xff0c;需要用户真实的身份信息。 …

【2048】我的创作纪念日

机缘 2048天&#xff0c;不知不觉来csdn博客已经有2048天了&#xff0c;其实用csdn平台很久了&#xff0c;实际上写博客还是从2019年开始。 还记得最初成为创作者初心是什么吗&#xff1f; 最开始&#xff0c;主要是用来做笔记。平时工作中、学习中遇到的技术相关问题都会在cs…

docker运行ActiveMQ-Artemis

前言 artemis跟以前的ActiveMQ不是一个产品&#xff0c;原ActiveMQ改为ActiveMQ Classic, 现在的artemis是新开发的&#xff0c;和原来不兼容&#xff0c;全称&#xff1a;ActiveMQ Artemis 本位仅介绍单机简单部署使用&#xff0c;仅用于学习和本地测试使用 官网&#xff1a;…

[JAVA]MyBatis框架—如何获取SqlSession对象实现数据交互(基础篇)

假设我们要查询数据库的用户信息&#xff0c;在MyBatis框架中&#xff0c;首先需要通过SqlSessionFactory创建SqlSession&#xff0c;然后才能使用SqlSession获取对应的Mapper接口&#xff0c;进而执行查询操作 在前一章我们学习了如何创建MyBatis的配置文件mybatis.config.xm…

ThinkServer SR658H V2服务器BMC做raid与装系统

目录 前提准备 一. 给磁盘做raid 二. 安装系统 前提准备 磁盘和系统BMC地址都已经准备好&#xff0c;可正常使用。 例&#xff1a; 设备BMC地址&#xff1a;10.99.240.196 一. 给磁盘做raid 要求&#xff1a; 1. 将两个894G的磁盘做成raid1 2. 将两块14902G的磁盘各自做…

aws(学习笔记第十四课) 面向NoSQL DB的DynamoDB

aws(学习笔记第十四课) 面向NoSQL DB的DynamoDB 学习内容&#xff1a; 开发一个任务TODO管理器 1. 主键&#xff0c;分区键和排序键 DynamoDB的表定义和属性定义 表定义&#xff08;简单主键&#xff09; 表定义的命名需要系统名 _ 表名的形式&#xff0c;提前规划好前缀。…

机器学习—正则化和偏差或方差

正则化参数的选择对偏差和方差的影响 用一个四阶多项式&#xff0c;要用正则化拟合这个模型&#xff0c;这里的lambda的值是正则化参数&#xff0c;它控制着你交易的金额&#xff0c;保持参数w与训练数据拟合&#xff0c;从将lambda设置为非常大的值的示例开始&#xff0c;例如…

聚类分析 | MSADBO优化Spectral谱聚类优化算法

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于改进正弦算法引导的蜣螂优化算法(MSADBO)优化Spectral谱聚类&#xff0c;matlab代码&#xff0c;直接运行! 创新独家&#xff0c;先用先发&#xff0c;注释清晰&#xff0c;送MSADBO参考文献!优化参数 优化后的带…