机器学习day2-特征工程

四.特征工程

1.概念

一般使用pandas来进行数据清洗和数据处理、使用sklearn来进行特征工程

将任意数据(文本或图像等)转换为数字特征,对特征进行相关的处理

步骤:1.特征提取;2.无量纲化(预处理):归一化、标准化;3.降维:底方差过滤特征选择,主成分分析-PCA降维

2.特征工程API

①.实例化转换器对象

DictVectorizer      字典特征提取
CountVectorizer     文本特征提取
TfidfVectorizer     TF-IDF文本特征词的重要程度特征提取 
MinMaxScaler        归一化
StandardScaler      标准化
VarianceThreshold   底方差过滤降维
PCA                 主成分分析降维

②.fit,transform和fit_transform

fit:用于计算数据的统计信息,比如均值和标准差(在StandardScaler的情况下),这些统计信息随后会被用于预测出来的数据

transform:使用已经通过fit方法计算出的统计信息来转换数据。

fit_transform:两者结合,更高效

一旦scaler对象在X_train上被fit,它就已经知道了如何将数据标准化。

先fit_transform(x_train)然后再transform(x_text)

fit只用一次

# fit 和 transform 和fittransform 区别
from sklearn.preprocessing import StandardScaler,MinMaxScaler
import numpy as np
transfer=StandardScaler()
x=np.random.randint(100,size=(3,4))
print(x)
transfer.fit(x)#计算出均值和标准差
x=transfer.transform(x)
# x=transfer.fit_transform(x)
print(x)
x2=np.array([[10,20,30,40]])
x2=transfer.transform(x2)
​
print(x2)

3.DictVectorizer 字典列表特征提取

1.稀疏矩阵

一个矩阵中大部分元素为0,常见于大规模数据分析、图形学、自然语言处理、机器学习等领域

常用存储方式:①.三元组表 (Coordinate List, COO):三元组表就是一种稀疏矩阵类型数据,存储非零元素的行索引、列索引和值:

(行,列) 数据

(0,0) 10

(0,1) 20

(2,0) 90

(2,20) 8

(8,0) 70

表示除了列出的有值, 其余全是0

②.压缩稀疏行 (CSR - Compressed Sparse Row):

  • CSR 格式将稀疏矩阵中的非零元素按行优先的方式存储。它使用了三个数组:

    • data:存储非零元素的值。

    • indices:存储data中每个元素的列索引。

    • indptr:存储每一行在dataindices数组中的起始位置。

  • CSR 格式非常适合快速地进行行访问和矩阵向量乘法。

③.压缩稀疏列 (CSC - Compressed Sparse Column):

  • CSC 格式类似于 CSR,但它是按列优先的方式来存储稀疏矩阵。同样也使用了三个数组:

    • data:存储非零元素的值。

    • indices:存储data中每个元素的行索引。

    • indptr:存储每一列在dataindices数组中的起始位置。

  • CSC 格式对于快速地进行列访问和某些类型的矩阵运算很有帮助。

④.字典 (Dictionary of Keys - DOK):

DOK 格式使用一个字典来存储非零元素,其中键是元素的位置(通常是元组 (row, column)),值是非零元素本身。

  • 这种格式适合于动态地增加或修改矩阵中的非零元素。

⑤.链表 (List of Lists - LIL):

  • LIL 格式使用两个列表来表示稀疏矩阵。其中一个列表包含每一行的非零元素,另一个列表包含了这些非零元素的列索引。

  • LIL 格式适合于构建稀疏矩阵,特别是当矩阵的结构在构建过程中发生变化时。

⑥.块稀疏行 (BSR - Block Sparse Row):

  • BSR 格式类似于 CSR,但它不是处理单个非零元素,而是处理固定大小的非零元素块。

  • 这种格式适用于那些非零元素倾向于形成小的密集子矩阵的情况。

2.非稀疏矩阵(稠密矩阵)

矩阵中的大部分元素都是非0的,矩阵的存储通常采用标准的二维数组形式。在数学计算、线性代数等通用计算领域更为常见。

3.API

创建转换器对象:

sklearn.feature_extraction.DictVectorizer(sparse=True)

DictVectorizer:字典向量化工具

参数:

sparse=True返回类型为csr_matrix的稀疏矩阵

sparse=False表示返回的是数组,数组可以调用.toarray()方法将稀疏矩阵转换为数组

转换器对象:

转换器对象调用fit_transform(data)函数,参数data为一维字典数组或一维字典列表,返回转化后的矩阵或数组

转换器对象get_feature_names_out()方法获取特征名

eg1.提取为稀疏矩阵对应的数组
# 字典列表特征提取
from sklearn.feature_extraction import DictVectorizer
import pandas   as pd
data=[{'city':'北京','money':38,"age":20},
      {'city':'上海','money':60,"age":29},
      {'city':'深圳','money':30,"age":32},
       {'city':'深圳','money':40,"age":49}]
# 初始化工具(字典变成向量的工具器)
model=DictVectorizer(sparse=False)#sparse是否转换成三元组形式
data=model.fit_transform(data)
# print(data,type(data))
# print(model.get_feature_names_out())#获取所有的特征名称
ddata=pd.DataFrame(data=data,columns=model.get_feature_names_out())
# print(ddata)
ddata
eg2.提取为稀疏矩阵
# 字典列表特征提取
from sklearn.feature_extraction import DictVectorizer
import pandas   as pd
data=[{'city':'北京','money':38,"age":20},
      {'city':'上海','money':60,"age":29},
      {'city':'深圳','money':30,"age":32},
       {'city':'深圳','money':40,"age":49}]
# 初始化工具(字典变成向量的工具器)
model=DictVectorizer(sparse=True)#sparse是否转换成三元组形式
data=model.fit_transform(data)
print(data,type(data))
arr=data.toarray()#把三元组(稀疏矩阵)转化为数组
print(arr)

4.CountVectorizer 文本特征提取

1.API

sklearn.feature_extraction.text.CountVectorizer

构造函数关键字参数stop_words,值为list,表示词的黑名单(不提取的词)

fit_transform函数的返回值为稀疏矩阵

eg3.英文文本提取
# CountVectorizer 文本特征提取
from sklearn.feature_extraction.text import CountVectorizer
corpus = ['I love machine learning. Its awesome.', 'Its a book amazon book', 'Amazon is book a great company']
# 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=[])
# 提取词频
x=vectorizer.fit_transform(corpus)
print(x)
print(x.toarray())
print(vectorizer.get_feature_names_out())
eg4.中文文本提取
! pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jieba
# CountVectorizer 中文本特征提取
from sklearn.feature_extraction.text import CountVectorizer
import jieba
import pandas as pd
# arr=list(jieba.cut("我爱北京天安门"))
# print(arr)
# str1=" ".join(arr)
# print(str1)
#传入的文本(没有断词的字符串) 用jieba分词工具转化为数据容器,然后再把数据容器中元素用空格连接成字符串
def my_cut(text):
    return " ".join(jieba.cut(text))
​
​
corpus = ["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]
# # 创建一个词频提取对象
vectorizer = CountVectorizer(stop_words=[])
# 提取词频
data=[my_cut(el) for el in corpus]
print(data)
x=vectorizer.fit_transform(data)
print(x)
print(x.toarray())
print(vectorizer.get_feature_names_out())
​
ddata=pd.DataFrame(x.toarray(),columns=vectorizer.get_feature_names_out())
ddata

5.TfidfVectorizer TF-IDF文本特征词的重要程度特征提取

1.算法

词频(Term Frequency, TF), 表示一个词在当前篇文章中的重要性,是对词数的归一化

TF=某个词在文章中的出现次数/文章的总词数

逆文档频率(Inverse Document Frequency, IDF), 反映了词在整个文档集合中的稀有程度

IDF=lg((语料库的文档总数+1)/(包含该词的文档数+1))

TF-IDF=词频(TF)×逆文档频率(IDF)

2.API

sklearn.feature_extraction.text.TfidfVectorizer()

构造函数关键字参数stop_words,表示词特征黑名单

fit_transform函数的返回值为稀疏矩阵

eg5
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
import jieba
import pandas as pd
def my_cut(text):
    return " ".join(jieba.cut(text))
data=["教育学会会长期间,坚定支持民办教育事业!",  "扶持民办,学校发展事业","事业做出重大贡献!"]
data=[my_cut(i) for i in data]
print(data)
transfer=TfidfVectorizer(stop_words=[])
res=transfer.fit_transform(data)
print(transfer.get_feature_names_out())
print(res.toarray())
ddata=pd.DataFrame(res.toarray(),columns=transfer.get_feature_names_out())
ddata

6.无量纲化-预处理

1.MinMaxScaler 归一化

2.归一化API

sklearn.preprocessing.MinMaxScaler(feature_range)

参数:feature_range=(0,1) 归一化后的值域,可以自己设定

fit_transform函数归一化的原始数据类型可以是list、DataFrame和ndarray, 不可以是稀疏矩阵

fit_transform函数的返回值为ndarray

eg6.归一化
from sklearn.preprocessing import MinMaxScaler
import pandas as   pd
scaler=MinMaxScaler(feature_range=(0,1))
data=pd.read_excel("./src/test2.xlsx")
print(data.values)
# arr=scaler.fit_transform(data.values)
arr=scaler.fit_transform(data)
print(arr)

鲁棒性较差

# 字典列表特征提取后的结果归一化
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing  import MinMaxScaler
import pandas   as pd
data=[{'city':'北京','money':38,"age":20},
      {'city':'上海','money':60,"age":29},
      {'city':'深圳','money':30,"age":32},
       {'city':'深圳','money':40,"age":49}]
# 初始化工具(字典变成向量的工具器)
model=DictVectorizer(sparse=True)#sparse是否转换成三元组形式
data=model.fit_transform(data)
# print(data,type(data))
arr=data.toarray()#把三元组(稀疏矩阵)转化为数组
print(arr)
arr_1=MinMaxScaler().fit_transform(arr)
arr_1

3.StandardScaler 标准化

4.标准化API

sklearn.preprocessing.StandardScale

与MinMaxScaler一样,原始数据类型可以是list、DataFrame和ndarray

fit_transform函数的返回值为ndarray, 归一化后得到的数据类型都是ndarray

eg7.标准化
from sklearn.preprocessing import StandardScaler
import numpy as np
# 初始化标准化工具
scaler = StandardScaler()
np.random.seed(7)
data=np.array([[1,2,3,4],
               [2,2,3,4],
               [3,2,3,4],
               [4,2,3,4]])
#np.random.randint(0,100,(30,4))
# print(data)
# 把data进行标准化
x=scaler.fit_transform(data)
print(x)

7.特征降维

降维:去掉一些特征或者将多个特征转化为少量个特征

在尽可能保留数据的重要信息上减少数据集维度,可以减少计算成本、去除噪声

方式:特征选择、主成份分析(PCA)

1.特征选择
①.VarianceThreshold 低方差过滤特征选择

计算方差-设定阈值-过滤特征

eg8
# 低方差过滤
from sklearn.feature_selection import VarianceThreshold
transfer=VarianceThreshold(threshold=0.01)
x=[[0,2,0,3],
   [0,1,4,3],
   [0,1,1,3]]
x=transfer.fit_transform(x)
print(x)

②.根据相关系数的特征选择

正相关性:一个变量增加通常伴随着另一个变量的增加。ρ=1,完全正相关

负相关性:一个变量减少通常伴随着另一个变量的减少。ρ=-1,完全负相关

不相关:两者的相关性很小,一个变量变化不会引起另外的变量变化。ρ=0,不存在线性关系

! pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy

皮尔逊相关系数(Pearson correlation coefficient)是一种度量两个变量之间线性相关性的统计量。它提供了两个变量间关系的方向(正相关或负相关)和强度的信息,取值范围是 [−1,1]。绝对值越大,表示越相关,当两特征完全相关时,两特征的值表示的向量是在同一条直线上,当两特征的相关系数绝对值很小时,两特征值表示的向量接近在同一条直线上。当相关系值为负数时,表示负相关

|ρ|<0.4为低度相关; 0.4<=|ρ|<0.7为显著相关; 0.7<=|ρ|<1为高度相关

API:

scipy.stats.personr(x, y) 计算两特征之间的相关性

返回对象有两个属性:

statistic皮尔逊相关系数[-1,1]

pvalue零假设(了解),统计上评估两个变量之间的相关性,越小越相关

from scipy.stats import pearsonr
import numpy as np
x1=[1,2,3,4,5]
y=[2,4,6,8,10]
r=pearsonr(x1,y)
print(r.statistic,r.pvalue)

2.主成份分析(PCA)

从原始特征空间中找到一个新的坐标系统,使得数据在新坐标轴的投影能够最大程度地保留数据的方差,同时减少维度。

保留信息/丢失信息=信息保留的比例

步骤:得到矩阵-用矩阵P对原始数据进行线性变换,得到新的数据矩阵Z-根据主成分的方差等,确定最终保留的主成分个数,留下方差大的

API

from sklearn.decomposition import PCA

PCA(n_components=None)

n_components:

  • 实参为小数时:表示降维后保留百分之多少的信息

  • 实参为整数时:表示减少到多少特征

    eg9
#特征降维 减少到多少特征
from sklearn.decomposition import PCA
data=[[2,8,4,5],
      [6,3,0,8],
      [5,4,9,1]]
pca=PCA(n_components=2)
data=pca.fit_transform(data)
print(data)

#特征降维
from sklearn.decomposition import PCA
import numpy as np
data=np.random.rand(5,100)#5条数据,100个特征量
#print(data)
pca=PCA(n_components=0.8)
data=pca.fit_transform(data)
print(data.shape,data)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/916985.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

sql数据库-排序查询-DQL

目录 语法 排序方式 举例 将表按年龄从小到大排序 将表按年龄从大到小排序 ​编辑 多重排序 将表按年龄升序&#xff0c;年龄相同按入职时间降序 语法 select * from 表名 order by 字段名1 排序方式1&#xff0c;字段2 排序方式2; 排序方式 升序&#xff1a;ASC&…

响应“一机两用”政策 落实政务外网安全

在数字化时代&#xff0c;政务办公外网安全的重要性日益凸显&#xff0c;特别是在“一机两用”的背景下&#xff0c;即同一台终端既要处理政务内网的数据&#xff0c;又要访问互联网&#xff0c;这对网络安全提出了更高的要求。深信达SPN安全上网方案&#xff0c;即反向沙箱技术…

测试实项中的偶必现难测bug--互斥逻辑异常

问题: 今天线上出了一个很奇怪的问题,看现象和接口是因为数据问题导致app模块奔溃 初步排查数据恢复后还是出现了数据重复的问题,查看后台实际只有一条数据,但是显示在app却出现了两条一模一样的置顶数据 排查: 1、顺着这个逻辑,我们准备在预发复现这个场景,先是cop…

Burpsuite的安装使用说明——【渗透工具介绍与使用】

# 前记 **工欲善其事必先利其器&#xff0c;本系列先介绍一些常见的安全工具的安装与使用** 该文章介绍的是Burpsuite的安装使用说明 > &#x1f340; 作者简介 > 小菜鸡罢了&#xff0c;研究过漏洞、扫过端口、写过脚本&#xff0c;迷恋着CTF&#xff0c;脑袋里充满了各…

如何在 WordPress 中轻松强制所有用户退出登录

作为一名长期管理 WordPress 网站的站长&#xff0c;我深知维护网站安全性的重要性。尤其是在面对会员网站或付费内容平台时&#xff0c;确保所有用户的登录状态是最新的&#xff0c;是维持网站正常运营的关键之一。今天&#xff0c;我就分享一下如何通过简单的步骤&#xff0c…

SNN学习(2):深入了解SNN及LIF神经元的原理和运行过程

目录 一、STDP机制 1、STDP 的基本原理 权重调整的“时间差依赖性” 2、STDP 的数学模型 二、SNN的应用场景 三、从人工神经网络ANN到脉冲神经网络SNN 1、脉冲 2、稀疏性&#xff08;Sparsity&#xff09; 3、事件驱动处理&#xff08;静态抑制&#xff09; 四、脉冲…

运动汇 专业的比赛管理平台数据获取

在获取到运动汇的网站链接后&#xff0c;界面如图所示: 右键检查&#xff0c;我们会发现没有任何数据&#xff0c;只有当我们点开这些"第一单元"、"第二单元"等&#xff0c;数据才会加载出来&#xff1b; 由于我们只需要分析这一个网页并获取其中的数据&a…

STM32 BootLoader 刷新项目 (十) Flash擦除-命令0x56

STM32 BootLoader 刷新项目 (十) Flash擦除-命令0x56 1. STM32F407 BootLoader 中的 Flash 擦除功能详解 在嵌入式系统中&#xff0c;BootLoader 的设计是非常关键的部分&#xff0c;它负责引导主程序的启动、升级以及安全管理。而在 STM32F407 等 MCU 上实现 BootLoader&…

rust高级特征

文章目录 不安全的rust解引用裸指针裸指针与引用和智能指针的区别裸指针使用解引用运算符 *&#xff0c;这需要一个 unsafe 块调用不安全函数或方法在不安全的代码之上构建一个安全的抽象层 使用 extern 函数调用外部代码rust调用C语言函数rust接口被C语言程序调用 访问或修改可…

45.第二阶段x86游戏实战2-hook监控实时抓取游戏lua

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 本人写的内容纯属胡编乱造&#xff0c;全都是合成造假&#xff0c;仅仅只是为了娱乐&#xff0c;请不要…

数据结构 ——— 层序遍历链式二叉树

目录 链式二叉树示意图​编辑 何为层序遍历 手搓一个链式二叉树 实现层序遍历链式二叉树 链式二叉树示意图 何为层序遍历 和前中后序遍历不同&#xff0c;前中后序遍历链式二叉树需要利用递归才能遍历 而层序遍历是非递归的形式&#xff0c;如上图&#xff1a;层序遍历的…

Vue3 -- 基于Vue3+TS+Vite项目【项目搭建及初始化】

兼容性注意&#xff1a; Vite 需要 Node.js 版本 18 或 20。然而&#xff0c;有些模板需要依赖更高的 Node 版本才能正常运行&#xff0c;当你的包管理器发出警告时&#xff0c;请注意升级你的 Node 版本。【摘抄自vite官网】 这里我用的node版本是 v18.20.2 创建项目&#xf…

Linux(CentOS 7) yum一键安装mysql8

1、通过yum安装 &#xff08;1&#xff09;下载mysql 在Linux找个地方输入以下命令 wget https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm &#xff08;2&#xff09;安装mysql yum 仓库配置文件 [rootVM-8-15-centos ~]# sudo rpm -Uvh mysql80-c…

第5章-总体设计 5.2 需求转化为规格

5.2 需求转化为规格 1.框式产品&#xff08;1&#xff09;业务规格&#xff0c;这需要满足客户期望、有市场竞争力、颗粒度最合理。&#xff08;2&#xff09;整框规格&#xff0c;包括电源、功耗、散热、可靠性的规格&#xff0c;要保证整款满足环境应用要求。&#xff08;3&a…

Android setTheme设置透明主题无效

【问题现象】 1、首先&#xff0c;你在AndroidManifest.xml中声明一个activity&#xff0c;不给application或者activity设置android:theme, 例如这样&#xff1a; <applicationandroid:allowBackup"true"android:icon"mipmap/ic_launcher"android:lab…

软考教材重点内容 信息安全工程师 第 3 章 密码学基本理论

&#xff08;本章相对老版本极大的简化&#xff0c;所有与算法相关的计算全部删除&#xff0c;因此考试需要了解各个常 用算法的基本参数以及考试中可能存在的古典密码算法的计算&#xff0c;典型的例子是 2021 和 2022 年分别考了 DES 算法中的 S 盒计算&#xff0c;RSA 中的已…

Jmeter基础篇(24)Jmeter目录下有哪些文件夹是可以删除,且不影响使用的呢?

一、前言 Jmeter使我们日常做性能测试最常用的工具之一啦&#xff01;但是我们在和其他同学协同工作的时候&#xff0c;偶尔也会遇到一些问题&#xff0c;例如我想要给别人发送一个Jmeter工具包&#xff0c;但这个文件包往往会很大&#xff0c;比较浪费流量和空间&#xff0c;…

【电子元器件】磁珠常识与选型

1. 什么是磁珠 磁珠是一种电感型EMI静噪滤波器&#xff0c;实物和电感很像&#xff0c;现在用的最多的是铁氧体磁珠。 片状铁氧体磁珠 磁珠的单位是欧姆&#xff0c;根据型号的不同&#xff0c;可以抑制几MHz&#xff5e;几GHz的噪声&#xff0c;经常被用在信号线和电源线上…

PostgreSQL中如果有Left Join的时候索引怎么加

在PostgreSQL中&#xff0c;当你的查询包含多个LEFT JOIN和WHERE条件时&#xff0c;合理地添加索引可以显著提高查询性能。以下是一些具体的优化步骤和建议&#xff1a; 1. 分析查询 使用 EXPLAIN ANALYZE 命令分析你的查询&#xff0c;了解查询的执行计划&#xff0c;识别出连…

【全面系统性介绍】虚拟机VM中CentOS 7 安装和网络配置指南

一、CentOS 7下载源 华为源&#xff1a;https://mirrors.huaweicloud.com/centos/7/isos/x86_64/ 阿里云源&#xff1a;centos-vault-7.9.2009-isos-x86_64安装包下载_开源镜像站-阿里云 百度网盘源&#xff1a;https://pan.baidu.com/s/1MjFPWS2P2pIRMLA2ioDlVg?pwdfudi &…