大模型基础BERT——Transformers的双向编码器表示

大模型基础BERT——Transformers的双向编码器表示

整体概况

BERT:用于语言理解的深度双向Transform的预训练
论文题目:BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding
Bidirectional Encoder Representations from Transformers.
概括:这篇文章在摘要部分说明了其参考的主要的文章就是ELBO和GPT的相关工作。

  1. BERT 模型只需一个额外的输出层即可进行微调,从而为各种任务(例如问答和语言推理)创建最先进的模型,而无需对特定于任务的架构进行大量修改

  2. 和论文的标题要对应起来预训练最早我们使用的是词嵌入来做模型的预训练的任务的,当然后面GPT系列的文章。

  3. 做预训练任务的时候主要有两种方式例如ELBO基于特征的方式,和BERT基于微调的方式。(GPT)感觉就像是迁移学习

  4. 受完形填空任务启发,通过使用“掩码语言模型”(MLM)预训练目标来实现前面提到的单向性约束(Taylor,1953)。

词嵌入wordembing(word2vec)

在进一步学习自然语言处理之前,因为自己之前主要研究的是cv的方向,因此对自然语言处理缺乏足够的知识去学习。在学习双向编码器之前需要先学习一些NLP的基础知识。

在这里插入图片描述

在自然语言处理中: 词是意义的基本单元。顾名思义, 词向量是用于表示单词意义的向量, 并且还可以被认为是单词的特征向量或表示。 将单词映射到实向量的技术称为词嵌入。 近年来,词嵌入逐渐成为自然语言处理的基础知识

在NLP领域构建词向量的过程中,我们如果使用独热编码的方式来进行词向量的构建是一个不好的方式。

  • 独热向量很容易构建,但它们通常不是一个好的选择。一个主要原因是独热向量不能准确表达不同词之间的相似度,比如我们经常使用的“余弦相似度”

  • 由于任意两个不同词的独热向量之间的余弦相似度为0,所以独热向量不能编码词之间的相似性。

x ⊤ y ∥ x ∥ ∥ y ∥ ∈ [ − 1 , 1 ] . \frac{\mathbf{x}^{\top} \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|} \in[-1,1] . x∥∥yxy[1,1].

我们通过词嵌入的技术可以将onehot编码下的高维稀疏向量,转化为低维且连续的向量。

然后我们这一部分学习的就是常用的词嵌入算法 ——word2vec的技术。通过特定的词嵌入算法,如word2vec、fasttext、Glove等训练一个通用的嵌入矩阵

在这里插入图片描述

word2vec工具是为了解决上述问题而提出的。它将每个词映射到一个固定长度的向量,这些向量能更好地表达不同词之间的相似性和类比关系

嵌入矩阵的行,是语料库中词语的个数,矩阵的列是表示词语的维度

在这里插入图片描述
5000个单词每个单词都使用128维度的向量来进行表示。

在这里插入图片描述

主要包括了两个部分组成。训练依赖于条件概率

  • 跳元模型(skip-gram)
  • 连续词袋(CBOW)

跳元模型(Skip-Gram)

跳元模型假设一个词可以用来在文本序列中生成其周围的单词。以文本序列“the”“man”“loves”“his”“son”为例。假设中心词选择“loves”,并将上下文窗口设置为2。

给定中心词“loves”,跳元模型考虑生成上下文词“the”“man”“him”“son”的条件概率:

在这里插入图片描述

 P("the","man","his","son" | "loves").  \text { P("the","man","his","son" | "loves"). }  P("the","man","his","son" | "loves"). 

假设上下文词是在给定中心词的情况下独立生成的(即条件独立性)。在这种情况下,上述条件概率可以重写为:

P (  "the" | "loves")  ⋅ P (  "man" | "loves")  ⋅ P (  "his" | "loves"  ) ⋅ P (  "son" | "loves")  P(\text { "the" | "loves") } \cdot P(\text { "man" | "loves") } \cdot P(\text { "his" | "loves" }) \cdot P(\text { "son" | "loves") } P( "the" | "loves") P( "man" | "loves") P( "his" | "loves" )P( "son" | "loves") 

也就是要设置好窗口的长度。设置好窗口的长度后,需要根据目标词,预测窗口内的上下文词:

在这里插入图片描述

在这里我们抛开公式来解释一下这一个跳元模型的建模的思想是什么?

也就是:Skip-gram在迭代时。

  • 调整词向量使目标词的词向量与其上下文的词向量尽可能的接近。
  • 使目标词的词向量与非上下文词的词向量尽可能的远离。

在这里插入图片描述
这里我们的建模的思想就是给定一个词向量,我们希望这样建模也就是:上下文词的词向量相似与非上下文词的词向量不相似。那么我们的词向量就能捕获词语之间的语义关系。

之后我们需要提出的问题就是,如何判断两个词向量是否相似呢?这里就是给定两个词向量,我们与Transform中一样使用点积来判断两个词向量之间的相似性。

A ⋅ B = a 1 b 1 + a 2 b 2 + … + a n b n A = ( a 1 , a 2 , … , a n ) B = ( b 1 , b 2 , … , b n ) \begin{array}{l} A \cdot B=a 1 b 1+a 2 b 2+\ldots+a n b n \\ A=(a 1, a 2, \ldots, a n) \\ B=(b 1, b 2, \ldots, b n) \end{array} AB=a1b1+a2b2++anbnA=(a1,a2,,an)B=(b1,b2,,bn)

向量的点积:衡量了两个向量在同一方向上的强度点积越大:两个向量越相似,它们对应的词语的语义就越接近。

在这里插入图片描述

跳元网络结构

Skip-Gram网络模型是一个神经网络。它主要是包括了

  • in_embedding和out_embedding两个嵌入层组成。
  • 向该神经网络输入一个目标词之后。
  • 模型会返回一个词表大小的分布情况。

词汇表中的每个词是目标词的上下文的可能性

在这里插入图片描述

词表中的词,与目标词有两种关系上下文词:正样本,标记为1非上下文词:负样本,标记为0

给定中心词w(词典中的索引lc),生成任何上下文词w。(词典中的索引lo)的条件概率可以通过对向量点积的softmax操作来建模:

P ( w o ∣ w c ) = exp ⁡ ( u o ⊤ v c ) ∑ i ∈ V exp ⁡ ( u i ⊤ v c ) P\left(w_{o} \mid w_{c}\right)=\frac{\exp \left(\mathbf{u}_{o}^{\top} \mathbf{v}_{c}\right)}{\sum_{i \in \mathcal{V}} \exp \left(\mathbf{u}_{i}^{\top} \mathbf{v}_{c}\right)} P(wowc)=iVexp(uivc)exp(uovc)

在这里插入图片描述

整体的模型得到的词表概率分布的公式如下所示:

∏ t = 1 T ∏ − m ≤ j ≤ m , j ≠ 0 P ( w ( t + j ) ∣ w ( t ) ) \prod_{t=1}^{T} \prod_{-m \leq j \leq m, j \neq 0} P\left(w^{(t+j)} \mid w^{(t)}\right) t=1Tmjm,j=0P(w(t+j)w(t))

网络训练

跳元模型参数是词表中每个词的中心词向量和上下文词向量。在训练中,我们通过最大化似然函数(即极大似然估计)来学习模型参数。这相当于最小化以下损失函数:

指定窗口长度为m,同时词向量的长度为T

− ∑ t = 1 T ∑ − m ≤ j ≤ m , log ⁡ P ( w ( t + j ) ∣ w ( t ) ) -\sum_{t=1}^{T} \sum_{-m \leq j \leq m,} \log P\left(w^{(t+j)} \mid w^{(t)}\right) t=1Tmjm,logP(w(t+j)w(t))

这里就可以使用随机梯度下降来最小化损失函数的值。

连续词袋(CBOW)模型

CBOW连续词袋模型 Continuous Bag of Words与刚刚说过的跳元模型相比是一个相反的过程了。

在这里插入图片描述
假设将我们的窗口长度设置为2以后,就有如下的推导关系了。

在这里插入图片描述

连续词袋模型假设中心词是基于其在文本序列中的周围上下文词生成的。例如,在文本序列“the”“man”“loves”“his”“son”中,在“loves”为中心词且上下文窗口为2的情况下,连续词袋模型考虑基于上下文词“the”“man”“him”“son”

在这里插入图片描述

P (  "loves" | "the","man","his","son").  P(\text { "loves" | "the","man","his","son"). } P( "loves" | "the","man","his","son"). 

CBOW的网络结构

我们按照这个顺序继续向下推导直到整个句子推导结束的时候在停止。

CBOW模型同样也是一个神经网络模型,该神经网络会接收上下文词语将上下文词语转换为最有可能得目标词。

在这里插入图片描述

我们将这个网络模型在进一步的进行细化进行解释。我们将其中每一个部分的蓝色部分单独的拿出来其中蓝色的部分就是我们的嵌入矩阵,也就是之前提到的N x V的部分。 其输出的结果就是一个词向量。

然后:由于某个词的上下文中,包括了多个词语这些词语会同时输入至embeddings层每个词语都会被转换为一个词向量

embeddings层的输出结果:是一个将语义信息平均的向量V

v = ( v 1 + v 2 + v 3 + v 4 ) / 4 v=(v 1+v 2+v 3+v 4) / 4 v=(v1+v2+v3+v4)/4

在这里插入图片描述

在这里插入图片描述

最后一步我们将所有词向量得到的平均值输入到最后的线性层中,通过最后的激活函数就可以得到需要预测的词了。整个过程就可以如下所示。概率最大的词就是我们的输出结果了。

在这里插入图片描述

按照和上面同样的思想我们就可以采用如下的方式来进行数学上的建模操作。

P ( w c ∣ w o 1 , … , w o 2 m ) = exp ⁡ ( 1 2 m u c ⊤ ( v o 1 + … , + v o 2 m ) ) ∑ i ∈ V exp ⁡ ( 1 2 m u i ⊤ ( v o 1 + … , + v o 2 m ) ) P\left(w_{c} \mid w_{o_{1}}, \ldots, w_{o_{2 m}}\right)=\frac{\exp \left(\frac{1}{2 m} \mathbf{u}_{c}^{\top}\left(\mathbf{v}_{o_{1}}+\ldots,+\mathbf{v}_{o_{2 m}}\right)\right)}{\sum_{i \in \mathcal{V}} \exp \left(\frac{1}{2 m} \mathbf{u}_{i}^{\top}\left(\mathbf{v}_{o_{1}}+\ldots,+\mathbf{v}_{o_{2 m}}\right)\right)} P(wcwo1,,wo2m)=iVexp(2m1ui(vo1+,+vo2m))exp(2m1uc(vo1+,+vo2m))

在这里插入图片描述

P ( w c ∣ W o ) = exp ⁡ ( u c ⊤ v ‾ o ) ∑ i ∈ V exp ⁡ ( u i ⊤ v ‾ o ) . P\left(w_{c} \mid \mathcal{W}_{o}\right)=\frac{\exp \left(\mathbf{u}_{c}^{\top} \overline{\mathbf{v}}_{o}\right)}{\sum_{i \in \mathcal{V}} \exp \left(\mathbf{u}_{i}^{\top} \overline{\mathbf{v}}_{o}\right)} . P(wcWo)=iVexp(uivo)exp(ucvo).

BERT的由来

BERT的由来本质上来自于NLP领域迁移学习的思考。使用预训练好的模型来抽取词、句子的特征 例如word2vec

最后我们就可以将整个的建模过程表示如下了:

∏ t = 1 T P ( w ( t ) ∣ w ( t − m ) , … , w ( t − 1 ) , w ( t + 1 ) , … , w ( t + m ) ) \prod_{t=1}^{T} P\left(w^{(t)} \mid w^{(t-m)}, \ldots, w^{(t-1)}, w^{(t+1)}, \ldots, w^{(t+m)}\right) t=1TP(w(t)w(tm),,w(t1),w(t+1),,w(t+m))

然而对于我们的一个新的任务来说需要构建新的网络来抓取新任务需要的信息Word2vec忽略了时序信息,语言模型只看了一个方向。

在这里插入图片描述

在CV方向上迁移学习有广泛的应用这里我自己举一个例子:例如在许多的网络中我们的backbone都使用的是预训练好的restnet50的权重,并且在网络训练的过程中会冻结这部分权重不需要在调整或者进行新的训练了。

同样NLP是否可以:基于微调的NLP模型预训练的模型抽取了足够多的信息新的任务只需要增加一个简单的输出层。

它就是一个只要Transform编码器的部分—只保留编码器的部分。它是第一个在NLP领域做的很大的网络,并且使用了很大的一个数据集,可以看作是大模型的一个前置的基础了

基础架构

BERT: 主要使用的是Transform的编码器的部分。也就是左半部分所以整个完整的结构理解起来还是挺容易的。

这里提到了是Transform的双向编码器的表示方式:也就是在自注意力机制中,每个词元都与其他所有词元计算注意力分数,这意味着每个词元在编码时都能获取到整个序列的信息。这种机制允许模型在编码时同时考虑前文和后文的信息,从而实现双向处理。

但是我们的Transform的Decode部分通常是单项的部分了,主要的原因是:在自然语言处理中,解码器通常用于生成文本,例如在机器翻译、文本摘要或问答系统中生成回答。在这些任务中,解码器需要根据已经生成的文本来预测下一个词元,而不能利用未来的信息。

在这里插入图片描述

我们的编码器部分主要包括了三个部分组成,其中BERT base是堆叠了12个编码器,而BERT large部分主要是堆叠了24个编码器部分。

  • 输入部分
  • 注意力机制部分
  • 前馈神经网络的部分

BERT和Transform的主要的区别在什么地方呢?

  1. Transform是由6个encode部分堆叠起来构成编码端,6个decode部分构成了解码端。

在这里插入图片描述

  1. 在编码方式上存在不同之处,Transform主要使用的是位置编码也就是正余弦的三角函数编码,而BERT采用的是

Input=token emb+ segment emb+ position emb

在这里插入图片描述

在我们的Transform的结构中,例如机器翻译的任务我们的句子要从source(原句子)经过encode的部分到target,在将得到的targets输入到decode部分中进行解码。同步的输出翻译的句子

这里的改进主要的就是想:如何通过新的编码的方式只使用encode完成

在这里插入图片描述

上面解释了我们的BERT是一个预训练的任务,也就是要实现通用的功能呀

论文中也提到了BERT主要包括了两个步骤预训练微调

在这里插入图片描述

如何做预训练

BERT的预训练主要包括了两个部分,主要是MLM+NSP :掩码语言模型+ 判断两个句子之间的关系。

BERT在预训练的时候使用的是大量的无标记的预料来进行的。(考虑通过无监督来去做。)

MLM:

在这里要考虑到两种无监督的目标函数。AR模型和AE模型

  • AR:auto regressive,自回归模型;只能考虑单侧的信息,典型的就是GPT。

在这里插入图片描述

自回归模型(Autoregressive Model,简称AR模型)是时间序列分析中的一种常用模型,它假设一个时间序列的未来值可以通过其过去值的线性组合来预测。自回归模型基于这样的假设:一个变量的当前值可以作为其过去值的函数来预测。

  • AE:auto encoding,自编码模型;从损坏的输入数据中预测重建原始数据。可以使用上下文的信息,Bert就是使用的AE

在这里插入图片描述

预训练任务一:MLM

带掩码的语言模型(Masked Language Model, MLM)是一种特殊的预训练任务,它通过随机地将输入文本中的一些词元替换为特殊的掩码标记(如mask),然后让模型预测这些被掩码的词元 。

受完形填空任务启发,通过使用“掩码语言模型”(MLM)预训练目标来实现前面提到的单向性约束(Taylor,1953)其实也就是说在做完型填空的时候不能只看一侧而应该关注左右两边的信息。

这种训练方式使得模型能够学习到词汇之间的语义关系和上下文依赖。在BERT等模型中,这种掩码策略通常包括将80%的词汇被替换为MASK,10%被替换为随机词汇,剩余10%保持不变 。这样的随机替换策略既保证了模型能够学习到足够的上下文信息,又避免了模型过度依赖MASK标记而忽略真实的词汇信息 。

在这里插入图片描述

预训练任务二:下一句子预测NSP

NSP:

NSP的样本如下:

  1. 从训练语料库中取出两个连续的段落作为正样本
  2. 从不同的文档中随机创建一对段落作为负样本

也就是预测:预测一个句子对中两个句子是不是相邻的这一个任务了。

也就是让我们的训练样本中:50%概率选择相邻句子对:50%概率选择随机句子对:将对应的输出放到一个全连接层来预测。

最后需要解释的就是我们输入的token序列对是如何进行的它包含的两个字符[CLS]和[SEP]的两个部分。

  1. 每个序列的标记始终是一个特殊的分类标记([CLS])
  2. 句子对被打包成一个序列。 我们以两种方式区分句子。 首先,我们用一个特殊的标记([SEP])将它们分开。

在这里插入图片描述

下面的这个图就是我们嵌入层的一个关系图也就是之前提到的编码方式。

在这里插入图片描述

  • Input:作为词嵌入层的一个输入属于是这里的[CLS]是用于NSP任务的一个标志词[SEP]用来将两个句子断开。

  • 第二部分的Segment Embeddings层这里将我们的第一个句子的编码EA设置为0,第二个部分的编码设置为1即可

  • 第三部分是位置编码的部分:这里是随机初始化让我们的模型自己学习出来

微调

更多的情况下我们不会去预训练一个BERT的模型而是使用大公司给我们预训练模型并在此基础上进行微调的操作。

也就是如何更好的将我们的BERT应用到下游的任务中去。

这里的微调就是:

  1. 在相同领域 上继续训练LM (Domain transfer)
  2. 在任务相关的小数据上继续训练LM(Tasktransfer)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/916754.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ceph层次架构分析

Ceph的层次结构可以从逻辑上自下向上分为以下几个层次: 一、基础存储系统RADOS层 功能:RADOS(Reliable Autonomic Distributed Object Store)是Ceph的底层存储系统,提供了分布式存储的核心功能。它是一个完整的对象存…

实验6记录网络与故障排除

实验6记录网络与故障排除 实验目的及要求: 通过实验,掌握如何利用文档记录网络设备相关信息并完成网络拓扑结构的绘制。能够使用各种技术和工具来找出连通性问题,使用文档来指导故障排除工作,确定具体的网络问题,实施…

【前端】技术演进发展简史

一、前端 1、概述 1990 年,第一个web浏览器诞生,Tim 以超文本语言 HTML 为基础在 NeXT 电脑上发明了最原始的 Web 浏览器。 1991 年,WWW诞生,这标志着前端技术的开始。 前端(Front-end)和后端(…

【笔记】关于git和GitHub和git bash

如何推送更新的代码到github仓库 如何在此项目已经提交在别的远程仓库的基础上更改远程仓库地址(也就是换一个远程仓库提交) 如何删除github中的一个文件 第二版 删除github上的一个仓库或者仓库里面的某个文件_github仓库删除一个文件好麻烦-CSDN博客 …

Chromium 中sqlite数据库操作演示c++

本文主要演示sqlite数据库 增删改查创建数据库以及数据库表的基本操作,仅供学习参考。 一、sqlite数据库操作类封装: sql\database.h sql\database.cc // Copyright 2012 The Chromium Authors // Use of this source code is governed by a BSD-sty…

谷歌Gemini发布iOS版App,live语音聊天免费用!

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…

autoDL微调训练qwen2vl大模型

autodl是一家GPU服务厂商,提供专业的GPU租用服务,秒级计费、稳定好用 先去autodl把官方的帮助文档看懂先 AutoDL帮助文档 autodl注册并登陆,充钱,根据自己的情况租用新实例 创建新实例后马上关机,因为有个省钱的办法…

使用大语言模型创建 Graph 数据

Neo4j 是开源的 Graph 数据库,Graph 数据通过三元组进行表示,两个顶点一条边,从语意上可以理解为:主语、谓语和宾语。GraphDB 能够通过图来表达复杂的结构,非常适合存储知识型数据,本文将通过大语言实现图数…

RDIFramework.NET Web敏捷开发框架 V6.1发布(.NET6+、Framework双引擎)

RDIFramwork.NET Web敏捷开发框架V6.1版本发布,本次版本更新得非常多,主要有全面重新设计业务逻辑代码,代码量减少一半以上,开发更加高效。底层引入最易上手的ORM框架SqlSugar,让开发更加便利高效。同时保持与前期版本…

vscode-相关自用插件(倒计时,时间显示,编码对齐,css等编码颜色,简体中文,git提交相关,vue项目)

1.倒计时插件 2.时间显示插件 3.编码对齐格式颜色条 4.css等编码颜色 5.简体中文 6.git提交相关 7.vue项目

推荐一款优秀的Flash幻灯片制作软件:Flash Gallery Factory

iPixSoft Flash Gallery Factory是一款优秀的Flash幻灯片制作软件,可以把图片变换成绚丽多彩的Flash幻灯片和Flash相册,并带有动画模板、过渡效果、装饰及背景音乐等功能,是一款不容错过的软件。 iPixSoft Flash Gallery Factory是一款最佳的…

【Linux】man 手册的使用指南

man 手册的使用指南 man手册中文版上传至资源(用心整理,感谢理解!) man手册官方下载链接:https://mirrors.edge.kernel.org/pub/linux/docs/man-pages/ man 手册页:https://linux.die.net/man/ Linux man…

机器学习-35-提取时间序列信号的特征

文章目录 1 特征提取方法1.1 特征提取过程1.2 两类特征提取方法2 基于数据驱动的方法2.1 领域特定特征提取2.2 基于频率的特征提取2.2.1 模拟信号2.2.2 傅里叶变换2.2.3 抽取最大幅值对应特征2.2.4 抽取峰值幅值对应特征2.3 基于统计的特征提取2.4 基于时间的特征提取3 参考附录…

redis序列化数据查询

可以看到是HashMap,那么是序列化的数据 那么我们来获得反序列化数据 import java.io.ByteArrayInputStream; import java.io.IOException; import java.io.ObjectInputStream; import redis.clients.jedis.Jedis;public class RedisDeserializeDemo {public static…

vue3 中直接使用 JSX ( lang=“tsx“ 的用法)

1. 安装依赖 npm i vitejs/plugin-vue-jsx2. 添加配置 vite.config.ts 中 import vueJsx from vitejs/plugin-vue-jsxplugins 中添加 vueJsx()3. 页面使用 <!-- 注意 lang 的值为 tsx --> <script setup lang"tsx"> const isDark ref(false)// 此处…

uniapp 实现 ble蓝牙同时连接多台蓝牙设备,支持app、苹果(ios)和安卓手机,以及ios连接蓝牙后的一些坑

首先对 uniapp BLE蓝牙API进行封装 这里我封装了一个类&#xff1a;bluetoothService.js 代码&#xff1a; import { throttle } from lodash export default class Bluetooth {constructor() {this.device {};this.connected false;// 使用箭头函数绑定类实例的上下文&am…

波段多空强弱指标案例,源码分享

俗话说&#xff0c;涨有涨势&#xff0c;跌有跌势&#xff0c;最怕涨跌不成型。对于波段来说&#xff0c;不论上涨还是下跌&#xff0c;都是可以进行操作或者回避的。但是波动的走势&#xff0c;往往只有走完才能完全确认。那么能不能量化波段里面涨跌的强弱变化呢&#xff1f;…

第21课-C++[set和map学习和使用]

&#x1f33c;引言 C 标准模板库&#xff08;STL&#xff09;中的 set 和 map 是两种非常实用的关联式容器。它们具备快速查找、有序存储的特点&#xff0c;因而在很多需要高效数据管理的场景中被广泛应用。本文将深入讲解 set 和 map 的用法&#xff0c;并通过实际例子分析如何…

视频流媒体播放器EasyPlayer.js RTSP播放器视频颜色变灰色/渲染发绿的原因分析

EasyPlayer.js RTSP播放器属于一款高效、精炼、稳定且免费的流媒体播放器&#xff0c;可支持多种流媒体协议播放&#xff0c;无须安装任何插件&#xff0c;起播快、延迟低、兼容性强&#xff0c;使用非常便捷。 EasyPlayer.js播放器不仅支持H.264与H.265视频编码格式&#xff0…

(一)- DRM架构

一&#xff0c;DRM简介 linux内核中包含两类图形显示设备驱动框架&#xff1a; FB设备&#xff1a;Framebuffer图形显示框架; DRM&#xff1a;直接渲染管理器&#xff08;Direct Rendering Manager&#xff09;&#xff0c;是linux目前主流的图形显示框架&#xff1b; 1&am…