RNN(循环神经网络)详解

1️⃣ RNN介绍

前馈神经网络(CNN,全连接网络)的流程是前向传播、反向传播和参数更新,存在以下不足:

  • 无法处理时序数据:时序数据长度一般不固定,而前馈神经网络要求输入和输出的维度是固定的,不能改变
  • 缺少记忆:前馈神经网络没有机制去记忆和处理之前的输入数据,因此无法处理像语言、股票走势或天气预报等 序列化时间依赖性强的数据

针对前馈神经网络上述问题,RNN引入以下机制:

  • 不同时间步的隐藏层之间是相连的
  • 在时刻t,隐藏层的输入包括两部分,当前时刻的输入 x t x_t xt和上一个时间步隐藏层的输出 s t − 1 s_{t-1} st1

通过这两条机制,模型能够记忆之前的输入数据,捕捉序列的上下文信息

看完这几句话你一定在想,这说的是个啥?太晕了,没关系,慢慢往下看

多说一句,RNN在很久之前就提出了,Jordan RNN于1986被提出,Elman RNN于1990年提出。


2️⃣ 原理介绍

接下来,讲讲具体原理,解决一下上面的迷惑。看下面这张图,分析一下 o t o_t ot的表达式:
在这里插入图片描述

  • x t x_t xt是t时刻的输入
  • s t s_t st是t时刻的记忆, s t = f ( U ⋅ x t + W ⋅ s t − 1 ) s_t=f(U\cdot x_t+W\cdot s_{t-1}) st=f(Uxt+Wst1),f表示激活函数, s t − 1 s_{t-1} st1表示t-1时刻的记忆
  • o t o_t ot是t时刻的输出, o t = s o f t m a x ( V ⋅ s t ) o_t=softmax(V\cdot s_t) ot=softmax(Vst)

看完上面这张图,对于W是什么疑惑很大,我一开始学习的时候也是这样,W到底是啥呢?来看下面这张图:
在这里插入图片描述

看完这张图,对于W的描述一目了然。W是在不同的时间步 隐藏层之间递归的权重。在RNN中,不同时间步使用相同的W,为了保证信息能够传递下去。

其实这里还有一个疑惑,按照我之前的认知,神经网络可训练的参数w和b都是在神经元上的,例如下面这张图。那么问题来了,RNN隐藏层神经元上参数是啥样的呢?
在这里插入图片描述
虽然下面的左图是这样画的,搞得好像参数U,W,V“漂浮在空中一般”,实际上,它们都在神经元上。准确的来说应该是右图的形式,U和W都在隐藏层神经元上,V在输出层神经元上。所以之前理解的神经元是一个神经元上只有一种参数。对于RNN来说,隐藏层神经元上有两种参数U和W。终于搞懂了,爽!
在这里插入图片描述
分析完RNN中参数的具体含义,来看看参数的尺寸:
U = 隐藏层神经元个数 × 输入尺寸 W = 隐藏层神经元个数 × 隐藏层神经元个数 V = 输出尺寸 × 隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸\\ W=隐藏层神经元个数×隐藏层神经元个数\\ V=输出尺寸×隐藏层神经元个数 U=隐藏层神经元个数×输入尺寸W=隐藏层神经元个数×隐藏层神经元个数V=输出尺寸×隐藏层神经元个数
这样最简单的RNN就分析完了。


3️⃣ 代码

接下来看一下最简单的代码:

import torch
import torch.nn as nn

# 参数设置
input_size = 2    # 每个时间步的特征维度
hidden_size = 5   # 隐层神经元数量
num_layers = 1    # RNN层数
output_size = 3   # 假设输出的维度

# RNN对象实例化
rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True)

# U:输入到隐藏状态的权重矩阵
U = rnn.weight_ih_l0  # 输入到隐藏状态的权重矩阵
print("矩阵 U 的大小 (输入到隐藏层):", U.shape)  # 应为 (hidden_size, input_size)

# W:隐藏状态到隐藏状态的权重矩阵
W = rnn.weight_hh_l0  # 隐藏状态之间的递归权重矩阵
print("矩阵 W 的大小 (隐藏层到隐藏层):", W.shape)  # 应为 (hidden_size, hidden_size)

# V:输出层权重矩阵
# 在 PyTorch 中没有直接实现,可以添加一个 Linear 层来模拟
V_layer = nn.Linear(hidden_size, output_size)  # 定义线性层
V = V_layer.weight  # V 就是隐藏状态到输出层的权重矩阵
print("矩阵 V 的大小 (隐藏层到输出层):", V.shape)  # 应为 (output_size, hidden_size)

输出:

矩阵 U 的大小 (输入到隐藏层): torch.Size([5, 2])
矩阵 W 的大小 (隐藏层到隐藏层): torch.Size([5, 5])
矩阵 V 的大小 (隐藏层到输出层): torch.Size([3, 5])

4️⃣ 总结

  • 标准的RNN存在梯度消失梯度爆炸问题,无法捕捉长时间序列的关系。因此LSTM和GRU被提出

5️⃣ 参考

  • 深度学习-神经网络-循环神经网络(一):RNN(Recurrent Neural Network,循环神经网络;1990年)
  • 理解循环神经网络(RNN)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/914419.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

github加速下载zip

加速下载 1. 第一个网站 https://github.moeyy.xyz/把需要下载的链接复制进去,点下载https://github.com/dotnet/sdk/archive/refs/tags/v8.0.400.zip2. 第二个网站 https://gh-proxy.com/ 加速访问 2、查询github的ip地址 打开此网址:[IP 查询](http…

微服务电商平台课程三:搭建后台服务

前言 上节课,我们一起完成基础环境搭建,这节课, 我们利用上节课搭建我们电商平台.这节课我们采用开源代码进行搭建, 不论大家后续从事什么行业,都要学会站在巨人的肩膀上. 之前所说的,整个微服务平台的技术栈也是非常多的, 由于时间和效果的关系, 我们不可能从每个技术一步一…

模拟 [leecode 54] 螺旋矩阵

一、题解:上下左右四条线不断收紧 int l 0, r matrix[0].size() - 1;int high 0, low matrix.size() - 1;从左到右,顶部一层遍历完往下移一位,high;if(high>low) break;//遍历完了从上到下,遍历完右侧往左移一位…

丹摩征文活动|Llama3.1的部署与使用指南

📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀ 丹摩征文 1. 初识Llama3.12. 部署流程创建实例登录实例部署LLama3.1 3. 实践使用教程4. 实践感想 前言:人工智能(AI&…

人际交往中,想要有好人缘,需做到“三要”,做到一个,也是好事

人际交往中,想要有好人缘,需做到“三要”,做到一个,也是好事 在这个世上,每个人都是一座孤岛,但通过人际交往这座桥梁,我们能够彼此相连,共同编织出一张温暖的社会网络。 好人缘&a…

Sql server 备份还原方法

备份 方法1,选择对应的数据库名-------》右键 任务---------》备份 默认备份类型 完整 文件后缀 .bak 方法2,选择对应的数据库名-------》右键 任务----------》生成脚本 选择要编写的数据库对象(表,视图,存储过程等) 选择对应的 服…

NVR设备ONVIF接入平台EasyCVR私有化部署视频平台如何安装欧拉OpenEuler 20.3 MySQL

在当今数字化时代,安防视频监控系统已成为保障公共安全和个人财产安全的重要工具。NVR设备ONVIF接入平台EasyCVR作为一款功能强大的智能视频监控管理平台,它不仅提供了视频远程监控、录像、存储与回放等基础功能,还涵盖了视频转码、视频快照、…

【MySQL】数据库知识突破:数据类型全解析与详解

前言:本节内容讲述MySQL的数据类型, 我们在学习之前的建表的时候已经用过各种各样的数据类型。 比如int、varchar、char类型等等。其中它们是对表的结构的操作, 并没有对数据的内容进行操作,所以它叫做DDL。另外,还有…

管理 Elasticsearch 变得更容易了,非常容易!

作者:来自 Elastic Ken Exner Elasticsearch 用户,我们听到了你的心声。管理 Elasticsearch 有时会变得很复杂,面临的挑战包括性能调整、问题检测和资源优化。我们一直致力于简化你的体验。今天,我们宣布了自收购 Opster 以来的一…

Android Parcelable和Serializable的区别与联系

在Android开发中,Parcelable和Serializable是两种用来在组件之间传递数据的序列化机制。它们有不同的使用场景和性能特点。 以下是它们之间的关系和区别: 1. 什么是 Parcelable Parcelable 是 Android 特有的接口,用于高效地在进程间传递数…

Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载

Moonshine 是由 Useful Sensors 公司推出的一系列「语音到文本(speech-to-text, STT)转换模型」,旨在为资源受限设备提供快速而准确的「自动语音识别(ASR)服务」。Moonshine 的设计特别适合于需要即时响应的应用场景&a…

GitHub桌面版汉化

桌面版下载地址 https://desktop.github.com/ 汉化包下载地址 Releases cngege/GitHubDesktop2Chinese GitHub 点击运行 重启后

linux-vlan(1)

# VLAN # 1.topo # 2.创建命名空间 ip netns add ns1 ip netns add ns2 ip netns add ns3 # 3.创建veth设备 ip link add ns1-veth0 type veth peer name ns21-veth0 ip link add ns3-veth0 type veth peer name ns23-veth0 # 4.veth设备放入命名空间,启动接口 ip link set n…

鸿蒙ArkTS中的获取网络数据

一、通过web组件加载网页 在C/S应用程序中,都有网络组件用于加载网页,鸿蒙ArkTS中也有类似的组件。   web组件,用于加载指定的网页,里面有很多的方法可以调用,虽然现在用得比较少,了解还是必须的。   演…

屏幕解析工具——OmniParser

0 引言 OmniParser是微软开源的一种屏幕解析工具,提供了一种将用户界面截图解析为结构化元素的综合方法,通过此方法可以对UI界面进行可交互元素的提取和描述,然后将此结构化信息和任务指令,输入到大模型中,以增强大模…

string------1

文章目录 一. STL1.概念2.版本 二. string类2.1 为什么学习string类2. 标准库中的string类2.2.1 构造(7个)2.2.2 对string类对象进行“访问和修改”(1)operator[](2)迭代器1.迭代器的使用2.迭代器的价值&am…

Docker-软件容器平台

一、容器 1、什么是容器 容器就是将软件打包成标准化单元,以用于开发、交付和部署 容器镜像是轻量的、可执行的独立软件包 ,包含软件运行所需的所有内容:代码、运行时环境、系统工具、系统库和设置。容器化软件适用于基于 Linux 和 Windows…

LED和QLED的区别

文章目录 1. 基础背光技术2. 量子点技术的引入3. 色彩表现4. 亮度和对比度5. 能效6. 寿命7. 价格总结 LED和 QLED都是基于液晶显示(LCD)技术的电视类型,但它们在显示技术、色彩表现和亮度方面有一些关键区别。以下是两者的详细区别&#xff…

速通LoRA:《LoRA: Low-Rank Adaptation of Large Language Models》全文解读

文章目录 总览AbstractIntroductionProblem StatementAren’t Existing Solutions Good Enough?Our MethodLow-Rank-Parametrized Update MatricesApplying LoRA to Transformer 何为高斯随机初始化Empirical ExperimentsBaselinesRoBERTa base/largeDeBERTa XXLGPT-2 medium/…

计算机图形学论文 | 木工设计与制造计划的共同优化

🦌🦌🦌读论文 我们的系统共同探索离散设计变量和制造计划的空间,以生成(设计,制造计划)对的帕累托前沿,使制造成本最小化。在该图中,(a)是椅子的输入设计和仅探索该设计的…