ATom: 矿物粉尘在卷云形成中的主导作用

目录

ATom: Dominant Role of Mineral Dust in Cirrus Cloud Formation

简介

摘要

代码

引用

网址推荐

知识星球

机器学习


ATom: Dominant Role of Mineral Dust in Cirrus Cloud Formation

简介

该数据集提供了:(1)由 NOAA 粒子分析激光质谱仪(PALMS)机载单粒子质谱仪结合气溶胶微物理特性(AMP)气溶胶粒径谱仪在遥远的热带太平洋和大西洋上空进行的原位尘埃气溶胶浓度测量。 在2016年至2018年的四次ATom活动期间,在NASA DC8飞机上进行了测量(2)从CESM全球传输模型中提取的飞机所在时间和地点的尘埃和气象学模型输出;(3)从GEOS全球传输模型中提取的飞机所在时间和地点的尘埃、其他气溶胶和气象学模型输出; (4) CESM 模型的全球尘埃输出和特定来源地区排放尘埃的气象学;(5) NCEP 全球预报系统在飞机起飞时间和地点启动的空气包裹的前向轨迹;以及 (6) 使用包裹模型模拟的沿前向轨迹形成的卷云的位置和性质。 这些数据已被用于更好地了解矿物尘埃在卷云形成过程中的作用。

摘要

大气层析成像飞行任务(ATom)是美国航天局地球风险亚轨道-2 飞行任务。 它研究人类造成的空气污染对温室气体和大气中化学反应气体的影响。 ATom 在美国国家航空航天局 DC-8 飞机上部署了大量气体和气溶胶有效载荷,对大气层进行系统的全球范围采样,从 0.2 公里到 12 公里高度连续进行剖面分析。 在 4 年的时间里,在四个季节的每个季节都进行了飞行。

代码

!pip install leafmap
!pip install pandas
!pip install folium
!pip install matplotlib
!pip install mapclassify
 
import pandas as pd
import leafmap
 
url = "https://github.com/opengeos/NASA-Earth-Data/raw/main/nasa_earth_data.tsv"
df = pd.read_csv(url, sep="\t")
df
 
leafmap.nasa_data_login()
 
 
results, gdf = leafmap.nasa_data_search(
    short_name="ATom_Mineral_Dust_Cirrus_Cloud_2006",
    cloud_hosted=True,
    bounding_box=(-180.0, -90.0, 180.0, 90.0),
    temporal=("2014-01-01", "2019-01-01"),
    count=-1,  # use -1 to return all datasets
    return_gdf=True,
)
 
 
gdf.explore()
 
#leafmap.nasa_data_download(results[:5], out_dir="data")

引用

Froyd, K.D., P. Yu, G.P. Schill, C.A. Brock, A. Kupc, C.J. Williamson, E. Jensen, E.A. Ray, K.H. Rosenlof, H. Bian, A.S. Darmenov, P.R. Colarco, G.S. Diskin, T.P. Bui, and D.M. Murphy. 2022. ATom: Dominant Role of Mineral Dust in Cirrus Cloud Formation. ORNL DAAC, Oak Ridge, Tennessee, USA. ATom: Dominant Role of Mineral Dust in Cirrus Cloud Formation, https://doi.org/10.3334/ORNLDAAC/2006

网址推荐

知识星球

知识星球 | 深度连接铁杆粉丝,运营高品质社群,知识变现的工具 (zsxq.com)icon-default.png?t=O83Ahttps://wx.zsxq.com/group/48888525452428

机器学习

https://www.cbedai.net/xg 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913905.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言 | Leetcode C语言题解之第560题和为K的子数组

题目: 题解: // 暴力美学:20行C代码 int subarraySum(int *nums, int numsSize, int k) {int count 0;// 弄个大数组做个暴力的Hash表,大概4*20M*2160M。用calloc初始化为全零。int *maps (int *)calloc(1001 * 20001 * 2, siz…

基于vue框架的的社区居民服务管理系统8w86o(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能:居民,楼房信息,报修信息,缴费信息,维修进度 开题报告内容 基于Vue框架的社区居民服务管理系统开题报告 一、研究背景与意义 随着城市化进程的加速,社区居民数量激增,社区管理面临着前所未有的挑战。传统的社区…

UE5.4 PCG 自定义PCG蓝图节点

ExecuteWithContext: PointLoopBody: 效果:点密度值与缩放成正比

[ Linux 命令基础 2 ] Linux 命令详解-系统管理命令

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…

单链表算法题(数据结构)

1. 反转链表 https://leetcode.cn/problems/reverse-linked-list/description/ 题目: 看到这个题目的时候我们怎么去想呢?如果我们反应快的话,应该可以想到我们可以从1遍历到5然后依次头插,但是其实我们还有更好的办法&#xff…

Java代码审计-模板注入漏洞

一、模板引擎 在Java开发当中,为了将前端和后端进行分离,降低项目代码的耦合性,使代码更加易于维护和管理。除去以上的原因,模板引擎还能实现动态和静态数据的分离。 二、主流模板引擎 在Java中,主流的模板引擎有:Fre…

SQLI LABS | Less-39 GET-Stacked Query Injection-Intiger Based

关注这个靶场的其它相关笔记:SQLI LABS —— 靶场笔记合集-CSDN博客 0x01:过关流程 输入下面的链接进入靶场(如果你的地址和我不一样,按照你本地的环境来): http://localhost/sqli-labs/Less-39/ 本关是堆…

《深度学习》——深度学习基础知识(全连接神经网络)

文章目录 1.神经网络简介2.什么是神经网络3.神经元是如何工作的3.1激活函数3.2参数的初始化3.2.1随机初始化3.2.2标准初始化3.2.3Xavier初始化(tf.keras中默认使用的)3.2.4He初始化 4.神经网络的搭建4.1通过Sequential构建神经网络4.2通过Functional API…

备战软考Day05-数据库系统基础知识

一、基本概念 1.数据库 数据库(Database,缩写为DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和易扩展性,并可为各种用户共享。 2.数据…

Spark 的容错机制:保障数据处理的稳定性与高效性

Spark 的介绍与搭建:从理论到实践_spark环境搭建-CSDN博客 Spark 的Standalone集群环境安装与测试-CSDN博客 PySpark 本地开发环境搭建与实践-CSDN博客 Spark 程序开发与提交:本地与集群模式全解析-CSDN博客 Spark on YARN:Spark集群模式…

NLP论文速读(NeurIPS2024)|使用视觉增强的提示来增强视觉推理

论文速读|Enhancing LLM Reasoning via Vision-Augmented Prompting 论文信息: 简介: 这篇论文试图解决的问题是大型语言模型(LLMs)在处理包含视觉和空间线索的推理问题时的局限性。尽管基于LLMs的推理框架(如Chain-of-Thought及其…

在 RHEL 8 | CentOS Linux release 8.5.2111上安装 Zabbix 6

1. 备份YUM源文件 cd /etc/yum.repos.d/ mkdir bak mv C* ./bak/ wget -O /etc/yum.repos.d/CentOS-Linux-BaseOS.repo https://mirrors.aliyun.com/repo/Centos-vault-8.5.2111.repo yum clean all yum makecache2. 将 SELinux 设置为宽容模式,如下所示。 sudo s…

在 Mac 和 Windows 系统中快速部署 OceanBase

OceanBase 是一款分布式数据库,具备出色的性能和高扩展性,可以为企业用户构建稳定可靠、灵活扩展性能的数据库服务。本文以开发者们普遍熟悉的Windows 或 Mac 环境为例,介绍如何快速上手并体验OceanBase。 一、环境准备 1. 硬件准备 OceanB…

【jenkins】jenkins使用pipeline配置django项目

目录 一、部署jenkins 二、配置 2.1 获取gitee账户凭证 2.2 安装pipeline插件 三、创建一个流水线项目 四、选择创建的项目 4.1 源码设置 4.2 配置 前言:个人使用,比较简单,做个笔记,这里我使用的是gitee作为仓库 一、部署…

qt QSyntaxHighlighter详解

1、概述 QSyntaxHighlighter是Qt文本处理框架中的一个强大工具,它专门用于实现文本编辑器中的语法高亮功能。通过自定义高亮规则,QSyntaxHighlighter可以实现对代码编辑器、富文本编辑器中的关键字、注释等内容的高亮显示。这一功能对于提升代码的可读性…

macOS 设置固定IP

文章目录 以太网Wifi![请添加图片描述](https://i-blog.csdnimg.cn/direct/65546e966cae4b2fa93ec9f0f87009d8.png) 基于 macOS 15.1 以太网 Wifi

从0开始深度学习(28)——序列模型

序列模型是指一类特别设计来处理序列数据的神经网络模型。序列数据指的是数据中的每个元素都有先后顺序,比如时间序列数据(股票价格、天气变化等)、自然语言文本(句子中的单词顺序)、语音信号等。 1 统计工具 前面介绍…

SpringBoot(八)使用AES库对字符串进行加密解密

博客的文章详情页面传递参数是使用AES加密过得,如下图所示: 这个AES加密是通用的加密方式,使用同一套算法,前端和后端都可以对加密之后的字符串进行加密解密操作。 目前线上正在使用的是前端javascript进行加密操作,将加密之后的字符串再传递到后端,PHP再进行解密操作。…

JVM双亲委派与自定义类加载器

一. 类加载过程 Java Application运行前需要将编译生成的字节码文件加载到JVM中,JVM类加载过程如下: 1. 加载 加载阶段是类加载的第一步,在加载阶段JVM会查找并加载类的字节码文件,这个过程通常从类路径(Classpath…

多媒体信息检索

文章目录 一、绪论二、文本检索 (Text Retrieval)(一) 索引1.倒排索引2.TF-IDF (二) 信息检索模型 (IR模型,Information Retrieval)1.布尔模型 (Boolean模型)(1)扩展的布尔模型 (两个词)(2)P-Norm模型 (多个词) 2.向量空间模型 (Vector Space Model,VSM)…