【高等数学】6向量与空间几何

1. 向量及其运算

1.1. 单向量的计算

向量的模的计算

$\left|\overrightarrow{a}\right|=\sqrt{a_x^2+a_y^2+a_z^2}$

单位向量的计算

1. 计算模:$\left|\overrightarrow{a}\right|=\sqrt{a_x^2+a_y^2+a_z^2}$

2. 向量除以它的模:$\overrightarrow{e}_a=\frac{\overrightarrow{a}}{\left|\overrightarrow{a}\right|}$

1.2. 向量的点乘

点乘的计算

点乘:算出来的是一个数,所以点乘又称为向量的数量积。

向量点乘的计算公式:$\overrightarrow{a}\cdot\overrightarrow{b}=\left(a_x,a_y,a_z\right)\cdot\left(b_x,b_y,b_z\right)=a_xb_x+a_yb_y+a_zb_z$

向量的夹角计算

向量的夹角公式:$\cos\theta=\frac{\overrightarrow{a}\cdot\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$

向量间平行垂直的判定

1. 平行的条件:$\frac{a_x}{b_x}=\frac{a_y}{b_y}=\frac{a_z}{b_z}$

2. 垂直的条件:$ \overrightarrow{a} \cdot \overrightarrow{b} = 0 $

1.3. 向量的叉乘

叉乘的计算

叉乘:算出来的是一个向量,所以点乘又称为两个向量的向量积。这个向量在方向上和原来的两个向量都垂直。两个向量对应的叉乘向量有两个,\overrightarrow{a}\times\overrightarrow{b}=-\overrightarrow{b}\times\overrightarrow{a}

向量叉乘的计算公式:$\overrightarrow{a}\times\overrightarrow{b}=\begin{vmatrix}i&j&k\\a_x&a_y&a_z\\b_x&b_y&b_z\end{vmatrix}$

例题

已知\overrightarrow{a}=(1,2,3)\overrightarrow{b}=(4,5,6),求\overrightarrow{a}\times\overrightarrow{b}

2. 空间平面和直线

2.1. 平面方程

核心思想

找点找向量

2.1.1. 点法式

1. 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913296.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux进程信号(信号的产生)

目录 什么是信号? 信号的产生 信号产生方式1:键盘 前台进程 后台进程 查看信号 signal系统调用 案例 理解进程记录信号 软件层面 硬件层面 信号产生方式2:指令 信号产生方式3:系统调用 kill系统调用 案例 其他产生信号的函数调用 1.rais…

7.qsqlquerymodel 与 qtableview使用

目录 qtableview 委托QStyledItemDelegateQAbstractItemDelegateCheckBoxItemDelegate使用qtableview控制列宽,行高,隐藏拖拽行列 qtableview 委托 //设置单元格委托 void setItemDelegate(QAbstractItemDelegate *delegate); QAbstractItemDelegate *it…

利用 Avalonia UI 构建 Blazor 混合应用程序

Blazor 是一个 .NET 前端框架,用于仅使用 .NET 技术构建 Web 应用程序。2021 年,Blazor 扩展到桌面端,推出了 Blazor Hybrid(混合),使开发者可以在桌面平台上使用已有的技能。 Blazor 混合应用程序是传统的…

MFC中Excel的导入以及使用步骤

参考地址 在需要对EXCEL表进行操作的类中添加以下头文件:若出现大量错误将其放入stdafx.h中 #include "resource.h" // 主符号 #include "CWorkbook.h" //单个工作簿 #include "CRange.h" //区域类,对Excel大…

【深入浅出】Linux进程(三)

📃博客主页: 小镇敲码人 💚代码仓库,欢迎访问 🚀 欢迎关注:👍点赞 👂🏽留言 😍收藏 🌏 任尔江湖满血骨,我自踏雪寻梅香。 万千浮云遮碧…

2024 第五次周赛

A: 直接遍历即可 #include<bits/stdc.h> using namespace std;typedef long long ll; typedef pair<ll, ll>PII; const int N 2e6 10; const int MOD 998244353; const int INF 0X3F3F3F3F;int n, m; int main() {cin >> n;int cnt 0;for(int i 0; i …

gitlab无法创建合并请求是所有分支都不显示

点击Merge Requests ------> New merge request 创建新的合并请求时&#xff0c;在Source branch和Target branch中一个分支都不显示 排查思路&#xff1a; 1.怀疑是权限问题。 发现只有我的一个账号出现&#xff0c;检查了账号的权限&#xff0c;尝试了master、develop角色…

Linux中给普通账户一次性提权

我在以前文章中Linux常见指令大全&#xff08;必要知识点&#xff09;-CSDN博客 写过sudo的概念与用法。其实本质就是提权用的但是在某些场景下就算提权了也不能使用。 例如&#xff1a;打开主工作目录 他不相信你这个用户&#xff0c;虽然你是erman 解决方法 使用root账号打开…

【C++】—掌握STL string类:string的模拟实现

文章目录 &#x1f49e;1.浅拷贝&#x1f49e;2.深拷贝&#x1f49e;3. string类的模拟实现&#x1f49e;3.1 string的构造函数&#x1f49e;3.2 string的析构函数&#x1f49e;3.3 string的拷贝构造&#x1f49e;3.4 string的size&#x1f49e;3.5 string的operator[]&#x1…

详解基于C#开发Windows API的SendMessage方法的鼠标键盘消息发送

在C#中&#xff0c;SendMessage方法是一个强大的工具&#xff0c;它允许我们与Windows API交互&#xff0c;模拟键盘和鼠标事件。本文将详细介绍如何使用SendMessage方法来发送鼠标和键盘消息。 1. SendMessage方法概述 SendMessage是Windows API中的一个函数&#xff0c;它用…

15.UE5等级、经验、血条,魔法恢复和消耗制作

2-17 等级、经验、血条、魔法消耗_哔哩哔哩_bilibili 目录 1.制作UI&#xff0c;等级&#xff0c;经验&#xff0c;血条 ​2.为属性面板绑定角色真实的属性&#xff0c;实现动态更新 3.魔法的消耗和恢复 1.制作UI&#xff0c;等级&#xff0c;经验&#xff0c;血条 创建控…

<项目代码>YOLOv8 玉米地杂草识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…

现场工程师日记-MSYS2迅速部署PostgreSQL主从备份数据库

文章目录 一、概要二、整体架构流程1. 安装 MSYS2 环境2. 安装postgresql 三、技术名词解释1.MSYS22.postgresql 四、技术细节1. 创建主数据库2.添加从数据库复制权限3. 按需修改参数&#xff08;1&#xff09;WAL保留空间&#xff08;2&#xff09;监听地址 4. 启动主服务器5.…

堆排序与链式二叉树:数据结构与排序算法的双重探索

大家好&#xff0c;我是小卡皮巴拉 文章目录 目录 引言 一.堆排序 1.1 版本一 核心概念 堆排序过程 1.2 版本二 堆排序函数 HeapSort 向下调整算法 AdjustDown 向上调整算法 AdjustUp 二.链式二叉树 2.1 前中后序遍历 链式二叉树的结构 创建链式二叉树 前序遍历…

【LinuxC编程】06 - 守护进程,线程

进程组和会话 概念和特性 进程组&#xff0c;也称之为作业。BSD于1980年前后向Unix中增加的一个新特性。代表一个或多个进程的集合。每个进程都属于一个进程组。在waitpid函数和kill函数的参数中都曾使用到。操作系统设计的进程组的概念&#xff0c;是为了简化对多个进程的管…

【MongoDB】MongoDB的聚合(Aggregate、Map Reduce)与管道(Pipline) 及索引详解(附详细案例)

文章目录 MongoDB的聚合操作&#xff08;Aggregate&#xff09;MongoDB的管道&#xff08;Pipline操作&#xff09;MongoDB的聚合&#xff08;Map Reduce&#xff09;MongoDB的索引 更多相关内容可查看 MongoDB的聚合操作&#xff08;Aggregate&#xff09; 简单理解&#xff…

Python的函数(补充浅拷贝和深拷贝)

一、定义 函数的定义&#xff1a;实现【特定功能】的代码块。 形参&#xff1a;函数定义时的参数&#xff0c;没有实际意义 实参&#xff1a;函数调用/使用时的参数&#xff0c;有实际意义 函数的作用&#xff1a; 简化代码提高代码重用性便于维护和修改提高代码的可扩展性…

Unity常见问题合集(一)

PS&#xff1a;不定期更新...... 目录 &#xff08;1&#xff09;无法关闭自动编译&#xff08;Edit — Preference — General — Auto Refresh&#xff09; &#xff08;1&#xff09;无法关闭自动编译&#xff08;Edit — Preference — General — Auto Refresh&#xff0…

HTB:Sightless[WriteUP]

目录 连接至HTB服务器并启动靶机 使用nmap对靶机TCP端口进行开放扫描 继续使用nmap对靶机开放的TCP端口进行脚本、服务扫描 首先尝试对靶机FTP服务进行匿名登录 使用curl访问靶机80端口 使用浏览器可以直接访问该域名 使用浏览器直接访问该子域 Getshell 横向移动 查…

深度学习-神经网络基础-网络搭建-损失函数-网络优化-正则化方法

一. 神经网络搭建和参数计算 一个继承(nn.model), 两个方法(init, forward) 简介 在pytorch中定义深度神经网络其实就是层堆叠的过程&#xff0c;继承自nn.Module&#xff0c;实现两个方法&#xff1a; init方法中定义网络中的层结构&#xff0c;主要是全连接层&#xff0c;…