深度学习经典模型之VGGNet

1 VGGNet

1.1 模型介绍

​ VGGNet是由牛津大学视觉几何小组(Visual Geometry Group, VGG)提出的一种深层卷积网络结构,他们以7.32%的错误率赢得了2014年ILSVRC分类任务的亚军(冠军由GoogLeNet以6.65%的错误率夺得)和25.32%的错误率夺得定位任务(Localization)的第一名(GoogLeNet错误率为26.44%) [ 5 ] ^{[5]} [5],网络名称VGGNet取自该小组名缩写。VGGNet是首批把图像分类的错误率降低到10%以内模型,同时该网络所采用的 3 × 3 3\times3 3×3卷积核的思想是后来许多模型的基础,该模型发表在2015年国际学习表征会议(International Conference On Learning Representations, ICLR)后至今被引用的次数已经超过1万4千余次。

1.2 模型结构

在这里插入图片描述

​ 图 1 VGG16网络结构图

​ 在原论文中的VGGNet包含了6个版本的演进,分别对应VGG11、VGG11-LRN、VGG13、VGG16-1、VGG16-3和VGG19,不同的后缀数值表示不同的网络层数(VGG11-LRN表示在第一层中采用了LRN的VGG11,VGG16-1表示后三组卷积块中最后一层卷积采用卷积核尺寸为 1 × 1 1\times1 1×1,相应的VGG16-3表示卷积核尺寸为 3 × 3 3\times3 3×3),本节介绍的VGG16为VGG16-3。图1中的VGG16体现了VGGNet的核心思路,使用 3 × 3 3\times3 3×3的卷积组合代替大尺寸的卷积(2个 3 × 3 卷积即可与 3\times3卷积即可与 3×3卷积即可与 5 × 5 5\times5 5×5卷积拥有相同的感受视野),网络参数设置如表2所示。

​ 表2 VGG16网络参数配置

网络层输入尺寸核尺寸输出尺寸参数个数
卷积层 C 11 C_{11} C11 224 × 224 × 3 224\times224\times3 224×224×3 3 × 3 × 64 / 1 3\times3\times64/1 3×3×64/1 224 × 224 × 64 224\times224\times64 224×224×64 ( 3 × 3 × 3 + 1 ) × 64 (3\times3\times3+1)\times64 (3×3×3+1)×64
卷积层 C 12 C_{12} C12 224 × 224 × 64 224\times224\times64 224×224×64 3 × 3 × 64 / 1 3\times3\times64/1 3×3×64/1 224 × 224 × 64 224\times224\times64 224×224×64 ( 3 × 3 × 64 + 1 ) × 64 (3\times3\times64+1)\times64 (3×3×64+1)×64
下采样层 S m a x 1 S_{max1} Smax1 224 × 224 × 64 224\times224\times64 224×224×64 2 × 2 / 2 2\times2/2 2×2/2 112 × 112 × 64 112\times112\times64 112×112×64 0 0 0
卷积层 C 21 C_{21} C21 112 × 112 × 64 112\times112\times64 112×112×64 3 × 3 × 128 / 1 3\times3\times128/1 3×3×128/1 112 × 112 × 128 112\times112\times128 112×112×128 ( 3 × 3 × 64 + 1 ) × 128 (3\times3\times64+1)\times128 (3×3×64+1)×128
卷积层 C 22 C_{22} C22 112 × 112 × 128 112\times112\times128 112×112×128 3 × 3 × 128 / 1 3\times3\times128/1 3×3×128/1 112 × 112 × 128 112\times112\times128 112×112×128 ( 3 × 3 × 128 + 1 ) × 128 (3\times3\times128+1)\times128 (3×3×128+1)×128
下采样层 S m a x 2 S_{max2} Smax2 112 × 112 × 128 112\times112\times128 112×112×128 2 × 2 / 2 2\times2/2 2×2/2 56 × 56 × 128 56\times56\times128 56×56×128 0 0 0
卷积层 C 31 C_{31} C31 56 × 56 × 128 56\times56\times128 56×56×128 3 × 3 × 256 / 1 3\times3\times256/1 3×3×256/1 56 × 56 × 256 56\times56\times256 56×56×256 ( 3 × 3 × 128 + 1 ) × 256 (3\times3\times128+1)\times256 (3×3×128+1)×256
卷积层 C 32 C_{32} C32 56 × 56 × 256 56\times56\times256 56×56×256 3 × 3 × 256 / 1 3\times3\times256/1 3×3×256/1 56 × 56 × 256 56\times56\times256 56×56×256 ( 3 × 3 × 256 + 1 ) × 256 (3\times3\times256+1)\times256 (3×3×256+1)×256
卷积层 C 33 C_{33} C33 56 × 56 × 256 56\times56\times256 56×56×256 3 × 3 × 256 / 1 3\times3\times256/1 3×3×256/1 56 × 56 × 256 56\times56\times256 56×56×256 ( 3 × 3 × 256 + 1 ) × 256 (3\times3\times256+1)\times256 (3×3×256+1)×256
下采样层 S m a x 3 S_{max3} Smax3 56 × 56 × 256 56\times56\times256 56×56×256 2 × 2 / 2 2\times2/2 2×2/2 28 × 28 × 256 28\times28\times256 28×28×256 0 0 0
卷积层 C 41 C_{41} C41 28 × 28 × 256 28\times28\times256 28×28×256 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 28 × 28 × 512 28\times28\times512 28×28×512 ( 3 × 3 × 256 + 1 ) × 512 (3\times3\times256+1)\times512 (3×3×256+1)×512
卷积层 C 42 C_{42} C42 28 × 28 × 512 28\times28\times512 28×28×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 28 × 28 × 512 28\times28\times512 28×28×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
卷积层 C 43 C_{43} C43 28 × 28 × 512 28\times28\times512 28×28×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 28 × 28 × 512 28\times28\times512 28×28×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
下采样层 S m a x 4 S_{max4} Smax4 28 × 28 × 512 28\times28\times512 28×28×512 2 × 2 / 2 2\times2/2 2×2/2 14 × 14 × 512 14\times14\times512 14×14×512 0 0 0
卷积层 C 51 C_{51} C51 14 × 14 × 512 14\times14\times512 14×14×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 14 × 14 × 512 14\times14\times512 14×14×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
卷积层 C 52 C_{52} C52 14 × 14 × 512 14\times14\times512 14×14×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 14 × 14 × 512 14\times14\times512 14×14×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
卷积层 C 53 C_{53} C53 14 × 14 × 512 14\times14\times512 14×14×512 3 × 3 × 512 / 1 3\times3\times512/1 3×3×512/1 14 × 14 × 512 14\times14\times512 14×14×512 ( 3 × 3 × 512 + 1 ) × 512 (3\times3\times512+1)\times512 (3×3×512+1)×512
下采样层 S m a x 5 S_{max5} Smax5 14 × 14 × 512 14\times14\times512 14×14×512 2 × 2 / 2 2\times2/2 2×2/2 7 × 7 × 512 7\times7\times512 7×7×512 0 0 0
全连接层 F C 1 FC_{1} FC1 7 × 7 × 512 7\times7\times512 7×7×512 ( 7 × 7 × 512 ) × 4096 (7\times7\times512)\times4096 (7×7×512)×4096 1 × 4096 1\times4096 1×4096 ( 7 × 7 × 512 + 1 ) × 4096 (7\times7\times512+1)\times4096 (7×7×512+1)×4096
全连接层 F C 2 FC_{2} FC2 1 × 4096 1\times4096 1×4096 4096 × 4096 4096\times4096 4096×4096 1 × 4096 1\times4096 1×4096 ( 4096 + 1 ) × 4096 (4096+1)\times4096 (4096+1)×4096
全连接层 F C 3 FC_{3} FC3 1 × 4096 1\times4096 1×4096 4096 × 1000 4096\times1000 4096×1000 1 × 1000 1\times1000 1×1000 ( 4096 + 1 ) × 1000 (4096+1)\times1000 (4096+1)×1000

1.3 模型特性

  • 整个网络都使用了同样大小的卷积核尺寸 3 × 3 3\times3 3×3和最大池化尺寸 2 × 2 2\times2 2×2
  • 1 × 1 1\times1 1×1卷积的意义主要在于线性变换,而输入通道数和输出通道数不变,没有发生降维。
  • 两个 3 × 3 3\times3 3×3的卷积层串联相当于1个 5 × 5 5\times5 5×5的卷积层,感受野大小为 5 × 5 5\times5 5×5。同样地,3个 3 × 3 3\times3 3×3的卷积层串联的效果则相当于1个 7 × 7 7\times7 7×7的卷积层。这样的连接方式使得网络参数量更小,而且多层的激活函数令网络对特征的学习能力更强。
  • VGGNet在训练时有一个小技巧,先训练浅层的的简单网络VGG11,再复用VGG11的权重来初始化VGG13,如此反复训练并初始化VGG19,能够使训练时收敛的速度更快。
  • 在训练过程中使用多尺度的变换对原始数据做数据增强,使得模型不易过拟合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/913071.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android的BroadcastReceiver

1.基本概念:BroadCast用于进程间或者线程间通信 本质上是用Binder方法,以AMS为订阅中心,完成注册,发布,监听的操作。 2.简单实现的例子 package com.android.car.myapplication;import android.content.BroadcastRe…

分布式数据库中间件mycat

MyCat MyCat是一个开源的分布式数据库系统,它实现了MySQL协议,可以作为数据库代理使用。 MyCat(中间件)的核心功能是分库分表,即将一个大表水平分割为多个小表,存储在后端的MySQL服务器或其他数据库中。 它不仅支持MySQL&#xff…

Java多线程编程(四)- 阻塞队列,生产者消费者模型,线程池

目录: 一.阻塞队列 二.线程池 一.阻塞队列 1.阻塞队列是⼀种特殊的队列. 也遵守 "先进先出" 的原则 阻塞队列能是⼀种线程安全的数据结构, 并且具有以下特性: 1.1.当队列满的时候, 继续入队列就会阻塞, 直到有其他线程从队列中取走元素 1.…

深度剖析JUC中LongAdder类源码

文章目录 1.诞生背景2.LongAdder核心思想3.底层实现:4.额外补充 1.诞生背景 LongAdder是JDK8新增的一个原子操作类,和AtomicLong扮演者同样的角色,由于采用AtomicLong 保证多线程数据同步,高并发场景下会导致大量线程同时竞争更新…

大数据面试题--kafka夺命连环问

1、kafka消息发送的流程? 在消息发送过程中涉及到两个线程:一个是 main 线程和一个 sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给双端队列,sender 线程不断从双端队列 RecordAccumulator 中拉取…

树形结构数据

树形结构数据 树形结构数据是一种基础且强大的数据结构,广泛应用于计算机科学和软件开发的各个领域。它模拟了自然界中树的层级关系,通过节点和它们之间的连接来组织数据。在本文中,我们将深入探讨树形结构数据的概念、特点、类型以及它们在…

dell服务器安装ESXI8

1.下载镜像在官网 2.打开ipmi(idrac),将esxi镜像挂载,然后服务器开机 3.进入bios设置cpu虚拟化开启,进入boot设置启动选项为映像方式 4..进入安装引导界面3.加载完配置进入安装 系统提示点击继 5.选择安装磁盘进行…

信息安全数学基础(46)域和Galois理论

域详述 定义: 域是一个包含加法、减法、乘法和除法(除数不为零)的代数结构,其中加法和乘法满足交换律、结合律,并且乘法对加法满足分配律。同时,域中的元素(通常称为数)在加法和乘法…

Windows端口占用/Java程序启动失败-进程占用的问题解决

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

Python酷库之旅-第三方库Pandas(204)

目录 一、用法精讲 951、pandas.IntervalIndex.values属性 951-1、语法 951-2、参数 951-3、功能 951-4、返回值 951-5、说明 951-6、用法 951-6-1、数据准备 951-6-2、代码示例 951-6-3、结果输出 952、pandas.IntervalIndex.from_arrays类方法 952-1、语法 952…

AndroidStudio-文本显示

一、设置文本的内容 1.方式&#xff1a; &#xff08;1&#xff09;在XML文件中通过属性&#xff1a;android:text设置文本 例如&#xff1a; <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.andr…

微星爆破弹ddr4wifi接线梳理研究

主板(微星爆破弹ddr4 wifi) mac用久了&#xff0c;windows的键盘都有点不习惯了。 理清了这些接口都是干啥的&#xff0c;接线就非常简单了。

机器视觉基础—双目相机

机器视觉基础—双目相机与立体视觉 双目相机概念与测量原理 我们多视几何的基础就在于是需要不同的相机拍摄的同一个物体的视场是由重合的区域的。通过下面的这种几何模型的目的是要得到估计物体的长度&#xff0c;或者说是离这个相机的距离。&#xff08;深度信息&#xff09…

【GPTs】EmojiAI:轻松生成趣味表情翻译

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | GPTs应用实例 文章目录 &#x1f4af;GPTs指令&#x1f4af;前言&#x1f4af;EmojiAI主要功能适用场景优点缺点 &#x1f4af;小结 &#x1f4af;GPTs指令 中文翻译&#xff1a; 此 GPT 的主要角色是为英文文本提供幽默…

「C/C++」C/C++STL 之 push_back 和 emplace_back 的区别

✨博客主页何曾参静谧的博客📌文章专栏「C/C++」C/C++程序设计📚全部专栏「VS」Visual Studio「C/C++」C/C++程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid函数说明目…

【Golang】Go语言教程

Go语言教程 文章目录 Go语言教程一、Go语言教程二、Go语言特色三、Go语言用途四、第一个Go程序六、运行代码的两种方式七、go run和go buil的区别7.1、go run7.2、Go build 一、Go语言教程 Go全称Golang Go是一个开源的编程语言&#xff0c;它能让构造简单、可靠且高效的软件变…

揭秘云计算 | 2、业务需求推动IT发展

揭秘云计算 | 1、云从哪里来&#xff1f;-CSDN博客https://blog.csdn.net/Ultipa/article/details/143430941?spm1001.2014.3001.5502 书接上文&#xff1a; 过去几十年间IT行业从大型主机过渡到客户端/服务器&#xff0c;再过渡到现如今的万物互联&#xff0c;IT可把控的资…

Tencent Hunyuan3D

一、前言 腾讯于2024年11月5日正式开源了最新的MoE模型“混元Large”以及混元3D生成大模型“Hunyuan3D-1.0”&#xff0c;支持企业及开发者在精调、部署等不同场景下的使用需求。 GitHub - Tencent/Hunyuan3D-1 二、技术与原理 Hunyuan3D-1.0 是一款支持文本生成3D&#xff08;…

WPF在MVVM模式下怎么实现导航功能

在mvvm的模式下wpf通过frame实现页面跳转_哔哩哔哩_bilibili 视频讲解同步可观看 如下图&#xff0c;我们要实现点击左侧的菜单&#xff0c;在右侧展示不同的页面 实现代码如下&#xff1a; 一、如何从主窗体跳转到页面。 1、在mainwindow.xaml的菜单栏代码里加入如下代码 …