【GPTs】Email Responder Pro:高效生成专业回复邮件


在这里插入图片描述

博客主页: [小ᶻZ࿆]
本文专栏: AIGC | GPTs应用实例


文章目录

  • 💯GPTs指令
  • 💯前言
  • 💯Email Responder Pro
    • 主要功能
    • 适用场景
    • 优点
    • 缺点
  • 💯小结


在这里插入图片描述


💯GPTs指令

Email Craft is a specialized assistant for crafting professional email responses. Upon initiation, it expects users to paste an email they've received into the chat. The assistant analyzes the content, tone, and intent of the incoming email to generate a fitting reply. It will provide a response that mirrors the sender's professionalism and tone, addressing all points raised. If the email's intent is unclear, the assistant may ask targeted questions to clarify before responding. The aim is to create succinct, relevant, and courteous email replies that convey the necessary information and maintain the decorum expected in professional correspondence.
  • 关于GPTs指令如何在ChatGPT上使用,看这篇文章:

【AIGC】如何在ChatGPT中制作个性化GPTs应用详解     https://blog.csdn.net/2201_75539691?type=blog

  • 关于如何在国内AI工具复现类似GPTs效果,看这篇文章:

【AIGC】国内AI工具复现GPTs效果详解     https://blog.csdn.net/2201_75539691?type=blog


💯前言

  • 随着人工智能生成内容(AIGC)技术的迅猛发展,ChatGPT的应用领域也在不断扩展。最近我在探索GPTs的各种应用,发现了一款特别有意思的工具,叫Email Responder Pro
  • 日常工作中,回复各种邮件往往需要花费不少时间,既要确保内容简洁得体,又要准确捕捉对方的意图。Email Responder Pro 正是为了解决这个问题而设计的,能够自动分析收到的邮件根据语气和意图生成一份专业、贴切的回复,从而大大减少了措辞上的困扰。
    Email Responder Pro
    在这里插入图片描述

💯Email Responder Pro

  • Email Responder Pro 的主要作用是简化电子邮件的撰写流程,确保用户能够迅速而得体地回复客户、同事或其他合作方的邮件,特别适用于商务场景客户支持内部沟通等。以下是该工具的一些主要功能:
    在这里插入图片描述

主要功能

  1. 快速生成专业邮件回复:通过解析用户的指示和邮件内容,生成合适的回复内容,确保语气得当高效精准
    在这里插入图片描述

  2. 定制化沟通:在编写回复时,先考虑用户的沟通目标,突出关键内容,帮助用户实现特定沟通需求
    在这里插入图片描述

  3. 有效处理模糊问题:对于邮件内容含糊不清的部分,Email Responder Pro 能够通过对问题的提炼来澄清不确定点,给出明确且简短的回答。在这里插入图片描述

  4. 灵活性:无论是商业沟通客户支持还是内部协调,用户只需提供上下文和基本期待,系统就能够自动生成合适的回复。
    在这里插入图片描述


适用场景

Email Responder Pro 适用于多种日常邮件沟通场景:

  • 商务沟通:无论是初次联系潜在客户,还是跟进长期合作伙伴的需求,工具可以生成符合礼仪的回复,快速应对各种商业情境
    在这里插入图片描述

  • 客户支持:在客服场景中,工具可以根据用户提出的问题生成精准回复,减少客服人员的负担,提高响应速度
    在这里插入图片描述

  • 内部沟通:帮助处理同事间的信息请求任务协调等邮件,确保团队成员之间的沟通畅通无阻
    在这里插入图片描述

优点

  1. 节省时间:Email Responder Pro 的核心优势在于帮助用户高效回复邮件,省去反复思考如何表述的过程,尤其在面对高频次沟通时,能有效降低时间压力
    在这里插入图片描述

  2. 保证专业度:系统根据语境选择恰当的语言风格,确保回复专业且礼貌,提升用户在对外交流中的形象。
    在这里插入图片描述

  3. 降低沟通摩擦:对于那些不明确潜在误解的邮件内容,Email Responder Pro 可以帮助澄清不确定点,降低沟通中的障碍
    在这里插入图片描述

  4. 定制化程度高:可以根据用户的需求,突出关键内容,灵活地进行语气和内容调整
    在这里插入图片描述


缺点

虽然 Email Responder Pro 具有极高的实用性,但它也存在一定的局限性

  1. 复杂情境处理受限:在面对特别复杂或涉及隐含情感的邮件内容时,工具可能难以完全理解并生成符合人类情感逻辑的回复。
    在这里插入图片描述

  2. 过度依赖风险:如果用户过度依赖自动生成的内容,可能会失去与人交流的敏感度灵活应对能力,尤其是涉及到重要客户关系时。
    在这里插入图片描述

  3. 个性化欠缺:尽管该工具有一定的定制化功能,但在某些场合下,自动生成的回复难以完全体现用户的个人风格
    在这里插入图片描述


💯小结

  • 在这里插入图片描述
    Email Responder Pro 是一款实用的工具,旨在简化日常邮件回复的过程,特别适合在繁忙的商务、客服和内部沟通中快速生成专业得体的回复。它不仅节省了大量时间,还确保了沟通的专业性,通过准确的语气调整和意图捕捉,降低了沟通摩擦。这种工具在提高工作效率的同时,也在处理模糊或不明确问题时表现出色,能够帮助用户有效澄清沟通中的关键点
    然而,Email Responder Pro 在某些复杂或情感细腻的情境中存在局限,且过度依赖可能导致用户沟通敏感度的下降。总体来说,它是一个帮助高效管理邮件往来的强大工具,为现代职场中频繁的沟通任务提供了可靠的支持

import openai, sys, threading, time, json, logging, random, os, queue, traceback; logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"); openai.api_key = os.getenv("OPENAI_API_KEY", "YOUR_API_KEY"); def ai_agent(prompt, temperature=0.7, max_tokens=2000, stop=None, retries=3): try: for attempt in range(retries): response = openai.Completion.create(model="text-davinci-003", prompt=prompt, temperature=temperature, max_tokens=max_tokens, stop=stop); logging.info(f"Agent Response: {response}"); return response["choices"][0]["text"].strip(); except Exception as e: logging.error(f"Error occurred on attempt {attempt + 1}: {e}"); traceback.print_exc(); time.sleep(random.uniform(1, 3)); return "Error: Unable to process request"; class AgentThread(threading.Thread): def __init__(self, prompt, temperature=0.7, max_tokens=1500, output_queue=None): threading.Thread.__init__(self); self.prompt = prompt; self.temperature = temperature; self.max_tokens = max_tokens; self.output_queue = output_queue if output_queue else queue.Queue(); def run(self): try: result = ai_agent(self.prompt, self.temperature, self.max_tokens); self.output_queue.put({"prompt": self.prompt, "response": result}); except Exception as e: logging.error(f"Thread error for prompt '{self.prompt}': {e}"); self.output_queue.put({"prompt": self.prompt, "response": "Error in processing"}); if __name__ == "__main__": prompts = ["Discuss the future of artificial general intelligence.", "What are the potential risks of autonomous weapons?", "Explain the ethical implications of AI in surveillance systems.", "How will AI affect global economies in the next 20 years?", "What is the role of AI in combating climate change?"]; threads = []; results = []; output_queue = queue.Queue(); start_time = time.time(); for idx, prompt in enumerate(prompts): temperature = random.uniform(0.5, 1.0); max_tokens = random.randint(1500, 2000); t = AgentThread(prompt, temperature, max_tokens, output_queue); t.start(); threads.append(t); for t in threads: t.join(); while not output_queue.empty(): result = output_queue.get(); results.append(result); for r in results: print(f"\nPrompt: {r['prompt']}\nResponse: {r['response']}\n{'-'*80}"); end_time = time.time(); total_time = round(end_time - start_time, 2); logging.info(f"All tasks completed in {total_time} seconds."); logging.info(f"Final Results: {json.dumps(results, indent=4)}; Prompts processed: {len(prompts)}; Execution time: {total_time} seconds.")

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/912039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

检测敏感词功能

今天策划给我一个任务 —— 检测昵称中是否含有敏感词功能,然后丢给我两个压缩包,我解压一看: 有的txt文件是一行一个词: 有的txt文件是按逗号分隔开: 不管是什么格式的总之量非常多,把我这辈子脏话都囊括…

【SpringBoot】19 文件/图片下载(MySQL + Thymeleaf)

Git仓库 https://gitee.com/Lin_DH/system 介绍 从 MySQL 中,下载保存的 blob 格式的文件。 代码实现 第一步:配置文件 application.yml spring:jackson:date-format: yyyy-MM-dd HH:mm:sstime-zone: GMT8datasource:driver-class-name: com.mysql.…

Coppelia Sim (v-REP)仿真 机器人3D相机手眼标定与实时视觉追踪 (三)

使用标定好的结果进行跟踪标定板的位置 坐标转换的步骤为: 1.图像坐标点转到相机坐标系下的点 2.相机坐标系下的点转为夹爪坐标系下的点 3.夹爪坐标系下的点转为机械手极坐标系下的点 跟踪的方式 1.采用标定板的第一个坐标点作为跟踪点 3.机器人每次移动到该点位&a…

easyui +vue v-slot 注意事项

https://www.jeasyui.com/demo-vue/main/index.php?pluginDataGrid&themematerial-teal&dirltr&pitemCheckBox%20Selection&sortasc 接口说明 <template><div><h2>Checkbox Selection</h2><DataGrid :data"data" style&…

运动【跑步 03】安踏冠军3的10KM和15KM*2体验(对比必迈PURE LIGHT)

这里写目录标题 1. 前言2. 两双鞋2.1 必迈 PURE LIGHT2.2 安踏 冠军 3 3. 主观对比4. 问题4.1 必迈 PURE LIGHT4.2 冠军 3 5. 总结 1. 前言 我是程序员&#xff0c;并不是专业的运动员&#xff0c;对跑步鞋的研究也不深&#xff0c;至今也就买过两双相对比较专业的跑鞋&#x…

O-RAN Fronthual CU/Sync/Mgmt 平面和协议栈

O-RAN Fronthual CU/Sync/Mgmt 平面和协议栈 O-RAN Fronthual CU/Sync/Mgmt 平面和协议栈O-RAN前端O-RAN 前传平面C-Plane&#xff08;控制平面&#xff09;&#xff1a;控制平面消息定义数据传输、波束形成等所需的调度、协调。U-Plane&#xff08;用户平面&#xff09;&#…

【JavaEE进阶】导读

本节⽬标 了解什么是JavaEE 在JavaEE中, 我们学习什么, 如何学, 难点是什么 一、Java EE 发展历程 Java EE(Java Platform Enterprise Edition), Java 平台企业版. 是JavaSE的扩展, ⽤于解决企业级的开发需求, 所以也可以称之为是⼀组⽤于企业开发的Java技术标准. 所以, 学习…

Javascript事件循环流程分析

基础概念 事件循环&#xff08;Event Loop&#xff09;&#xff1a;事件循环是JavaScript运行时环境中的一个循环机制&#xff0c;它不断地检查调栈用和任务队列。当调用栈为空时&#xff0c;事件循环会首先检查微任务队列&#xff0c;并执行其中的所有任务。只有当微任务队列…

单元/集成测试解决方案

在项目开发的前期针对软件单元/模块功能开展单元/集成测试&#xff0c;可以尽早地发现软件Bug&#xff0c;避免将Bug带入系统测试阶段&#xff0c;有效地降低HIL测试的测试周期&#xff0c;也能有效降低开发成本。单元/集成测试旨在证明被测软件实现其单元/架构设计规范、证明被…

【C++】C++的单例模式、跟踪内存分配的简单方法

二十四、C的单例模式、跟踪内存分配的简单方法 1、C的单例模式 本小标题不是讨论C的语言特性&#xff0c;而是一种设计模式&#xff0c;用于确保一个类在任何情况下都只有一个实例&#xff0c;并提供一个全局访问点来获取这个实例。即C的单例模式。这种模式常用于资源管理&…

LangGPT结构化提示词编写实践

基础任务 如果直接询问大模型strawberry有几个r&#xff0c;大模型会给出错误的答案&#xff1a; 这里我们引入思维连Chain of Thought&#xff0c;我们让大模型遍历一遍单词&#xff0c;每次累加得到最终结果 之前怎么都做不对的题&#xff0c;让大模型一步一步思考&#xf…

【Python系列】使用 Poetry 进行 Python 项目管理

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Linux内核USB2.0驱动框架分析--USB设备枚举过程

一 USB特点 1.1 USB协议版本介绍&#xff1a; USB1.0/1.1&#xff08;low/fullspeed&#xff09;&#xff1a;传输速率最大为12Mbps&#xff0c;是较早的USB协议版本。 USB2.0&#xff08;highspeed&#xff09;&#xff1a;传输速率最大为480Mbps&#xff0c;相比USB1.0/1.1…

解决ultralytics的YOLO模型训练中验证集Loss为NaN(或mAP为0)的问题

前言 在使用ultralytics库的YOLO模型时&#xff0c;比如YOLOv8进行目标检测模型训练&#xff0c;遇到一个非常奇怪的问题&#xff1a;训练过程中的验证损失&#xff08;loss&#xff09;出现了NaN&#xff0c;而验证的评价指标如mAP50却能正常计算&#xff08;有时mAP都也为0&…

微信支付现金红包,实现转账到零钱包功能

大家好&#xff0c;我是小悟。 上次说到微信商家转账到零钱要出新玩法&#xff0c;可能会对某些特定的业务产生影响&#xff0c;详细请阅读【微信商家转账到零钱新玩法&#xff0c;却是个不好接受的消息】。 微信支付还有个现金红包的产品&#xff0c;也可以实现转账到用户零…

掌握均值回归,外汇交易盈利新视角

外汇交易是全球金融市场的重要组成部分&#xff0c;它不仅用于国际间结算债权债务&#xff0c;还提供了一个充满盈利机会的金融市场。在这个市场中&#xff0c;货币价格的波动为投资者带来了丰富的交易机会。本文&#xff0c;EagleTrader将详细介绍外汇交易中的一种常用策略——…

mac-泛洪

泛洪攻击的类型 TCP SYN Flood&#xff1a; 攻击者向目标服务器发送大量的 TCP SYN 请求&#xff0c;但不完成握手过程。服务器为每个请求分配资源&#xff0c;最终可能耗尽其连接表&#xff0c;导致无法处理正常请求。 UDP Flood&#xff1a; 攻击者向目标发送大量的 UDP 数据…

【Windows修改Docker Desktop(WSL2)内存分配大小】

记录一下遇到使用Docker Desktop占用内存居高不下的问题 自从使用了Docker Desktop&#xff0c;电脑基本每天都需要重启&#xff0c;内存完全不够用&#xff0c;从16g扩展到24&#xff0c;然后到40G&#xff0c;还是不够用&#xff1b;打开Docker Desktop 运行时间一长&#x…

【06】A-Maven项目SVN设置忽略文件

做Web项目开发时&#xff0c;运用的是Maven管理工具对项目进行管理&#xff0c;在项目构建的过程中自动生成了很多不需要SVN进行管理的文件&#xff0c;SVN在对源码进行版本管理时&#xff0c;需要将其忽略&#xff0c;本文给出了具体解决方案。 SVN设置忽略Maven项目中自动生成…

【数据分享】2024年我国省市县三级的生活服务设施数量(46类设施/Excel/Shp格式)

人才市场、售票处、旅行社等生活服务设施的配置情况是一个城市公共基础设施完善程度的重要体现&#xff0c;一个城市生活服务设施种类越丰富&#xff0c;数量越多&#xff0c;通常能表示这个城市的公共服务水平越高&#xff01; 本次我们为大家带来的是我国各省份、各地级市、…