2020年美国总统大选数据分析与模型预测

数据集取自:2020年🇺🇸🇺🇸美国大选数据集 - Heywhale.com

前言

对2020年美国总统大选数据的深入分析,提供各州和县层面的投票情况及选民行为的可视化展示。数据预处理阶段将涉及对异常值的处理,以确保分析的准确性。通过数据清洗、集成、转换将为后续分析整理合理的数据集。在数据分析阶段,本次实训关注候选人在各州的得票情况及各州的政党优势,同时对县级投票支持率和选举结果进行可视化。此外,人口特征分析将帮助我们理解不同性别、年龄及地域对投票的影响。模型建立阶段将应用KNN和朴素贝叶斯算法,对大选结果预测进行建模,以其发现潜在的影响因素并为未来的选举策略提供依据。

数据预处理

数据清洗

导入csv文件,后使用 data.isnull() 检查数据框中每个元素是否为缺失值,并返回一个布尔值数据框。接着,sum() 方法计算每一列缺失值的总数,输出缺失值的统计信息。然后填充缺失值并检查。

# # 加载数据
data = pd.read_csv('president_counties.csv')

# 查看前几行数据
print(data.head())

# 检查缺失值
print(data.isnull().sum())
# 处理缺失值
data['state_code'] = data['state_code'].fillna('DC')
# 再次检查
print(data.isnull().sum())

数据集中fips联邦信息代码这列在分析中用不到,选择删除,并查看删除后的数据 

# 使用drop方法移除fips列
data = data.drop(columns=['fips'])

# 查看移除后的数据
print(data.head())

 利用箱型图以经度为判断依据,判断并删除数据集中的异常数据,如图2-3所示。异常值处理后输出结果如图

 异常值数据在经度-160左右处,这里采取删除异常值的方式处理数据。

# 计算四分位数
Q1 = data['long'].quantile(0.25)
Q3 = data['long'].quantile(0.75)
IQR = Q3 - Q1
# 打印四分位数和IQR
print(f"Q1: {Q1}, Q3: {Q3}, IQR: {IQR}")
# 定义异常值的边界
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# 打印异常值的边界
print(f"Lower Bound: {lower_bound}, Upper Bound: {upper_bound}")
# 找出异常值
outliers = data[(data['long'] < lower_bound) | (data['long'] > upper_bound)]
print("异常值:")
print(outliers[['id', 'state', 'county', 'long']])
# 如果没有异常值,打印提示信息
if outliers.empty:
    print("没有找到异常值。")
# 删除异常值获取完成预处理的数据cleaned_data
cleaned_data = data[(data['long'] >= lower_bound) & (data['long'] <= upper_bound)]

# 查看删除异常值后的数据
print("\n删除异常值后的数据:")
print(cleaned_data.head())

 数据集成

 检查cleaned_data中的重复行数量,然后删除这些重复行,再次检查并输出处理后的数据框中是否还有重复行。通过这种方式,可以确保数据的唯一性,便于后续的数据分析和处理。

# 检查重复数据
print("重复数据情况:")
print(cleaned_data.duplicated().sum())

# 删除重复数据
cleaned_data = cleaned_data.drop_duplicates()

# 再次检查重复数据
print("处理后的重复数据情况:")
print(cleaned_data.duplicated().sum())

 数据转换

针对一个数据集,进行类型转换和计算,并新增县人民投票参与率特征vote_percentage。先将数据集中 id 列的类型转换为整数型,将 total_votes 列转换为整数型,以确保其可以进行数学运算。然后将 male 和 female 列的类型转换为整数型,这分别是男性和女性的投票数。再将 population 列转换为整数型,表示总人口数,将 long 列转换为浮点型,表示地理坐标的经度。最后计算每个数据行的投票百分比,其中 vote_percentage 列为总投票数与总人口数的比值,乘以 100 以转换为百分比形式。

# 转换数据类型
data['id'] = data['id'].astype(int)
data['total_votes'] = data['total_votes'].astype(int)
data['male'] = data['male'].astype(int)
data['female'] = data['female'].astype(int)
data['median_age'] = data['median_age'].astype(float)
data['population'] = data['population'].astype(int)
data['female_percentage'] = data['female_percentage'].astype(float)
data['lat'] = data['lat'].astype(float)
data['long'] = data['long'].astype(float)

# 添加或计算新的特征
data['vote_percentage'] = data['total_votes'] / data['population'] * 100

数据探索分析


数据可视化

对各州各县各候选人的得票情况进行数据可视化,使用折线图展示不同候选人在各州的投票情况。通过对数据的分组和汇总,生成清晰的图表,以便观察各候选人在不同州的表现。从图上可以看出在大多数州,乔·拜登(蓝色线条)的得票数高于唐纳德·特朗普(红色线条),尤其是在人口较多的州。特朗普在一些州的表现较好,但在整体上落后于拜登。效果图和代码如下。

# 各州各候选人的得票情况(折线图)
# 按州和候选人分组,计算每个候选人在每个州的总得票数
grouped_data = cleaned_data.groupby(['state', 'candidate'])['total_votes'].sum().unstack().fillna(0).reset_index()

plt.style.use('ggplot')

fig, ax = plt.subplots(figsize=(12, 8))

for candidate in grouped_data.columns[1:]:
    ax.plot(grouped_data['state'], grouped_data[candidate], marker='o', label=candidate)

ax.set_title('各州各候选人的得票情况')
ax.set_xlabel('州')
ax.set_ylabel('得票数')
plt.xticks(rotation=90)
ax.legend(title='候选人')
plt.tight_layout()
plt.show()

 分析不同州的投票数据,确定每个州的主导政党,并将结果以热力图的形式可视化,以便更直观地展示各州的投票趋势。可以看到一些州的条颜色较深,表明这些州的主要政党贡献了大量的选票。相反,有些州的条形颜色较浅,说明这些州的主要政党贡献的选票较少。效果图和代码如下.

# 州政党优势

agg_data = cleaned_data.groupby(['state', 'party'])['total_votes'].sum().unstack().fillna(0).reset_index()

# 确定优势政党
agg_data['dominant_party'] = agg_data[['DEM', 'REP']].idxmax(axis=1)
agg_data['dominant_votes'] = agg_data[['DEM', 'REP']].max(axis=1)

# 创建热力图数据
heatmap_data = agg_data.pivot(index='state', columns='dominant_party', values='dominant_votes')

# 绘制热力图
plt.figure(figsize=(10, 8))
sns.heatmap(heatmap_data, annot=True, fmt='.0f', cmap='coolwarm', cbar_kws={'label': 'Total Votes'})
plt.title('2020年美国大选中各州占主导地位的政党')
plt.xlabel('主要政党')
plt.ylabel('州')
plt.show()

 从候选人投票数据中生成一个条形图,直观展示不同候选人的县支持数,并在图中显著标识“Joe Biden”。图中Donald Trump 获得了更多的县数,柱子的高度明显高于 Joe Biden 的柱子。具体来说,Donald Trump 赢得了大约 2,500 个县,而 Joe Biden 赢得了约 400 个县。效果图和代码如下。

#  计算每个候选人赢得的县数量
candidate_wins = cleaned_data['candidate'].value_counts()

#  绘制条形图
plt.figure(figsize=(10, 6))
candidate_wins.plot(kind='bar', color=['blue' if c == 'Joe Biden' else 'red' for c in candidate_wins.index])
plt.title('候选人赢得的县数')
plt.xlabel('候选人')
plt.ylabel('县支持数')
plt.xticks(rotation=0)
plt.show()

根据人口数据绘制一个条形图,使用不同颜色区分候选人名字,并设置了相应图表的标题和坐标轴标签,这样能直观地展示支持候选人的县总人口数据。从图表中可以看出,拜登的支持县总人口明显多于特朗普的支持县总人口。这意味着在选举中,拜登获得了更多来自人口密集地区的选民支持。

综合来看,虽然 特朗普 在县的数量上占据了优势,但 拜登 在人口较多的地区获得了更多的支持。这意味着 拜登 在大城市和人口稠密的地区表现更好,而 特朗普 则在较小的城市和地区有更多的支持者。

因此,可以推断出 拜登 在总统大选中获胜的可能性更大,因为他在人口众多的关键州份取得了领先。

可视化性别比例数据,通过堆叠条形图直观地展示男性和女性的人口比例。这张图表展示了两位候选人的性别比例分布情况。具体来说:对于 特朗普 来说,男性选民的比例略高于女性选民;对于 拜登 来说,则是相反的情况,即女性选民的比例更高。

 绘制一个柱状图,展示选民的中位年龄

代码: 

# 按候选人分组
grouped = cleaned_data.groupby('candidate')

# 总人口
total_population = grouped['population'].sum()

# 性别比例
gender_ratio = grouped[['male', 'female']].sum()
gender_ratio['female_percentage'] = gender_ratio['female'] / (gender_ratio['male'] + gender_ratio['female']) * 100

# 年龄中位数
median_age = grouped['median_age'].mean()

 # 绘制图表

# 总人口
plt.figure(figsize=(10, 6))
total_population.plot(kind='bar', color=['blue' if c == 'Joe Biden' else 'red' for c in total_population.index])
plt.title('支持县总人口')
plt.xlabel('候选人')
plt.ylabel('总人口')
plt.xticks(rotation=0)
plt.show()

# 性别比例
plt.figure(figsize=(10, 6))
gender_ratio[['male', 'female']].plot(kind='bar', stacked=True, color=['blue', 'pink'])
plt.title('选民性别比例')
plt.xlabel('候选人')
plt.ylabel('总人口')
plt.xticks(rotation=0)
plt.legend(title='Gender', labels=['Male', 'Female'])
plt.show()

# 年龄中位数
plt.figure(figsize=(10, 6))
median_age.plot(kind='bar', color=['blue' if c == 'Joe Biden' else 'red' for c in median_age.index])
plt.title('选民年龄中位数')
plt.xlabel('候选人')
plt.ylabel('年龄')
plt.xticks(rotation=0)
plt.show()

通过选择经纬度作为横纵轴并将大选投票支持度对应地理位置可视化。通过散点图,用户可以直观地看到选举结果的地理分布,从而为后续的数据分析或建模提供依据。这张图显示了特朗普和拜登在美国各州的支持率分布情况。特朗普在传统共和党势力较强的南部和中西部地区表现较好,而拜登在民主党传统的东北部和西海岸地区表现出色。代码和效果图如下。

 

# 大选投票地理分布
plt.figure(figsize=(10, 10))

legend_labels = {'blue': False, 'red': False}

for index, row in cleaned_data.iterrows():
    color = 'blue' if row['color'] == 'blue' else 'red'
    label = '拜登' if color == 'blue' else '特朗普'

    if not legend_labels[color]:
        plt.scatter(row['long'], row['lat'], c=color, alpha=0.5, label=label)
        legend_labels[color] = True
    else:
        plt.scatter(row['long'], row['lat'], c=color, alpha=0.5)

plt.title('选举结果地理分布')
plt.xlabel('经度')
plt.ylabel('纬度')

plt.legend()
plt.show()

从清洗后的数据集中选择特定特征,计算这些特征之间的相关性矩阵,并通过热图进行可视化。

其具体步骤包括:定义特征列表,提取相关特征,计算相关性矩阵并打印结果,然后使用 Seaborn 库绘制热图来直观展示各个特征之间的相关性。热图通过颜色和数值标注清晰地展示了变量之间的关系,帮助用户更好地理解数据中的关联性。

从图上可以得出,总票数与男性和女性选民的数量之间存在很强的正相关性;中位年龄与总票数、男性和女性选民数量之间存在负相关性,但与人口数量和女性比例之间存在正相关性;人口数量与总票数、中位年龄和女性比例之间存在正相关性,但与男性和女性选民数量之间存在负相关性;性比例与总票数、中位年龄和人口数量之间存在正相关性,但与男性和女性选民数量之间存在负相关性。

总体投票数与人口总数高度相关:

这意味着人口较多的地区通常会有更多的投票人数。大都市区可能对选举结果有更大的影响。

建模与评估

朴素贝叶斯

首先复制了数据集并进行了清理,提取了特征,如党派、总票数、性别、年龄、人口及性别比例等,以及目标变量。然后,数据被分为训练集和测试集,模型评估的结果显示了多个指标,包括精确度、召回率、F1-score、支持度以及整体准确率。这些评估指标用于衡量模型在分类任务中的性能,表明模型在预测候选人类别时的有效性。

代码:

# 明确复制数据集
cleaned_datas = cleaned_data.copy()
# 将分类数据转换为数字编码
cleaned_datas.loc[:, 'candidate'] = cleaned_datas['candidate'].map({'Joe Biden': 0, 'Donald Trump': 1})
cleaned_datas.loc[:, 'party'] = cleaned_datas['party'].map({'DEM': 0, 'REP': 1})
# 移除不需要的列
cleaned_datas.drop(['id', 'state', 'county', 'won', 'fips', 'state_code', 'color'], axis=1, inplace=True)
cleaned_datas['candidate'] = cleaned_datas['candidate'].astype(int)
# 定义特征X和标签y
X = cleaned_datas.drop('candidate', axis=1)
y = cleaned_datas['candidate']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 朴素贝叶斯模型
nb_model = GaussianNB()
nb_model.fit(X_train, y_train)
nb_predictions = nb_model.predict(X_test)
print("朴素贝叶斯模型准确率:", accuracy_score(y_test, nb_predictions))
print(classification_report(y_test, nb_predictions))

结果展示

K近邻

使用K近邻(KNN)分类器进行超参数调优和模型评估。首先,定义了一个参数网格,其中n_neighbors的范围从1到20,用于设置KNN模型中考虑的邻居数量。接着,利用网格搜索和5折交叉验证来寻找最佳参数,并对训练数据进行拟合。获得最佳模型后,使用它对测试数据进行预测,并通过计算精确率、召回率和F1分数等指标来评估模型性能。最终,模型的整体准确率达到了86.49%,表明其分类效果良好。

代码

# K近邻模型
param_grid = {'n_neighbors': list(range(1, 21))}
knn_grid = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5, scoring='accuracy')
knn_grid.fit(X_train, y_train)
best_knn_model = knn_grid.best_estimator_
print("最佳KNN模型参数:", knn_grid.best_params_)

knn_predictions = best_knn_model.predict(X_test)
print("KNN模型准确率:", accuracy_score(y_test, knn_predictions))
print(classification_report(y_test, knn_predictions))

结果展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/910475.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

微服务系列五:避免雪崩问题的限流、隔离、熔断措施

目录 实验环境说明 前言 一、一片小雪花引起的雪崩&#xff01; 1.1 雪崩问题&#xff08;级联失败问题&#xff09;示意图 1.2 雪崩问题的产生原因与解决策略 二、雪崩问题的具体解决策略 2.1 请求限流 2.2 线程隔离 2.3 服务熔断 2.4 总结——具体解决策略 三、微…

聊一聊:ChatGPT搜索引擎会取代谷歌和百度吗?

当地时间 10 月 31 日&#xff0c;OpenAI 正式推出了 ChatGPT 搜索功能&#xff0c;能实时、快速获取附带相关网页来源链接的答案。这一重大升级标志着其正式向谷歌的搜索引擎霸主地位发起挑战。 本周五我们聊一聊&#xff1a; 欢迎在评论区畅所欲言&#xff0c;分享你的观点~ …

国标GB28181公网直播EasyGBS国标GB28181软件管理解决方案

随着信息技术的飞速发展&#xff0c;视频监控技术已经成为维护公共安全、提升管理效率的重要手段。在这一背景下&#xff0c;国标GB28181软件EasyGBS作为一款自主研发的安防视频管理软件&#xff0c;致力于为用户提供全面、高效且可靠的视频监控管理体验。其强大的功能和灵活的…

《Practical Deep Raw Image Denoising on Mobile Devices》论文详解

简介&#xff1a;个人学习分享&#xff0c;如有错误&#xff0c;欢迎批评指正。 论文&#xff1a;Practical Deep Raw Image Denoising on Mobile Devices 引言 在数字摄影领域&#xff0c;噪声是影响图像质量的主要因素之一&#xff0c;特别是在弱光条件下拍摄时更为明显。移…

戴尔电脑 Bios 如何进入?Dell Bios 进入 Bios 快捷键是什么?

BIOS&#xff08;基本输入输出系统&#xff09;是计算机启动时运行的第一个程序&#xff0c;它负责初始化硬件并加载操作系统。对于戴尔电脑用户来说&#xff0c;有时可能需要进入 BIOS 进行一些特定的设置调整&#xff0c;比如更改启动顺序、调整性能选项或解决硬件兼容性问题…

【AD】3-2 原理图绘制格点的调整与推荐设置

1.点击工具&#xff0c;选择原理图优先项&#xff0c;如图设置 2.画原理图之前&#xff0c;选中原理图&#xff0c;也可以快捷键vgs&#xff0c;设置栅格为100mil&#xff0c;并画原理图是元器件管脚放置在格点上 3.通过改选项设置格点显示与不显示

I.MX6U 裸机开发2. 芯片简介、汇编基础及GPIO操作准备工作

I.MX6U 裸机开发2. 芯片简介、汇编基础及GPIO操作准备工作 一、I.MX6U 芯片介绍1. 基本介绍2. 架构图如下&#xff1a;3. I.MX6U 管脚定义规则 &#xff1a; 二、GPIO资源介绍1. 原理图2. 寄存器控制(1) 使能时钟&#xff0c;CCGR0~CCGR7(2) 设置引脚复用(3) 设置电气属性(4) 配…

DNS配置

1.搭建dns服务器能够对自定义的正向或者反向域完成数据解析查询。 2.配置从DNS服务器&#xff0c;对主dns服务器进行数据备份。 options {listen-on port 53 { 192.168.111.130; };directory "/var/named";allow-query { any;};zone "openlab.com&qu…

day-81 打家劫舍 II

思路 与LCR 089. 打家劫舍相比&#xff0c;本题所有房屋围成了一圈&#xff0c;那么第一间房子和最后一间房子不能同时打劫&#xff0c;那么就可以分为两种情况&#xff1a;1.选第一间房打劫&#xff1b;2.选最后一间房打劫 解题过程 然后依次计算出以上两种情况的最大金额&am…

什么是进销存?进销存系统都有哪些类型?

进销存管理和企业运营之间的利害关系大家应该都已经听的不少了。上次给大家说明白了进销存系统是什么&#xff0c;但是进销存系统到底有哪几种&#xff1f;把今天这篇文章耐心读完你就懂了&#xff01; 随着市场竞争的加剧和消费者需求的多样化&#xff0c;企业亟需灵活高效的…

spark的学习-03

RDD的创建的两种方式&#xff1a; 方式一&#xff1a;并行化一个已存在的集合 方法&#xff1a;parallelize 并行的意思 将一个集合转换为RDD 方式二&#xff1a;读取外部共享存储系统 方法&#xff1a;textFile、wholeTextFile、newAPIHadoopRDD等 读取外部存储系统的数…

Python练习10

Python日常练习 题目&#xff1a; 编写程序&#xff0c;输出如下所示图案。 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 要求&#xff1a; 使用for循环的方式完成 --------------------------------------------------------- 注意&#xff1a; …

【云原生开发】K8S多集群资源管理平台架构设计

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

「iOS」——知乎日报一二周总结

知乎日报仿写 前言效果Manager封装网络请求线程冲突问题下拉刷新添加网络请求的图片通过时间戳和日期格式化获取时间 总结 前言 前两周内容的仿写&#xff0c;主要完成了首页的仿写&#xff0c;进度稍慢。 效果 Manager封装网络请求 知乎日报的仿写需要频繁的申请网络请求&am…

【ArcGISPro】汉化嵌入的NoteBook界面

效果展示 下载Notebook汉化包 pip install jupyterlab-language-pack-zh-CN 添加环境变量 LANG zh_CN.UTF8 汉化结果

长亭那个检测能力超强的 WAF,出免费版啦

告诉你们一个震撼人心的消息&#xff0c;那个检测能力超强的 WAF——长亭雷池&#xff0c;他推出免费社区版啦&#xff0c;体验地址见文末。 八年前我刚从学校毕业&#xff0c;在腾讯做安全研究&#xff0c;看到宇森在 BlackHat 上演讲的议题 《永别了&#xff0c;SQL 注入》 …

了解bootstrap改造asp.net core MVC的样式模板

我们都知道&#xff0c;在使用默认的asp.net core MVC模板建立项目的时候&#xff0c;里面的样式是已经事先被写好了的。一般来说都在css目录下的site.css和bootstrap.css及下面的bootstrap.min.css中。我们打开bootstrap这些样式文件&#xff0c;里面有大量的样式类的定义&…

scratch计算台阶 2024年9月scratch四级真题 中国电子学会 图形化编程 scratch四级真题和答案解析

目录 scratch计算台阶 一、题目要求 1、准备工作 2、功能实现 二、案例分析 1、角色分析 2、背景分析 3、前期准备 三、解题思路 1、思路分析 2、详细过程 四、程序编写 五、考点分析 六、推荐资料 1、入门基础 2、蓝桥杯比赛 3、考级资料 4、视频课程 5、p…

数据结构之二叉树前序,中序,后序习题分析(递归图)

1.比较相同的树 二叉树不能轻易用断言&#xff0c;因为树一定有空 2.找结点值 3.单值二叉树 4.对称二叉树 5.前序遍历

mysql死锁查看和解决

文章目录 一、MySQL死锁排查1、查看正在进行中的事务2、查看正在锁的事务3、查看等待锁的事务4、查询是否锁表5、查看最近死锁的日志6、杀死死锁 本文是基于Mysql8.0进行讲解。 本文只讲解如何查询数据库中是否有死锁及死锁的解决&#xff0c;若想了解更多关于死锁的信息&…