ST-GCN模型实现花样滑冰动作分类

项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。

《------往期经典推荐------》

项目名称
1.【基于CNN-RNN的影像报告生成】
2.【卫星图像道路检测DeepLabV3Plus模型】
3.【GAN模型实现二次元头像生成】
4.【CNN模型实现mnist手写数字识别】
5.【fasterRCNN模型实现飞机类目标检测】
6.【CNN-LSTM住宅用电量预测】
7.【VGG16模型实现新冠肺炎图片多分类】
8.【AlexNet模型实现鸟类识别】
9.【DIN模型实现推荐算法】
10.【FiBiNET模型实现推荐算法】
11.【钢板表面缺陷检测基于HRNET模型】

1. 项目简介

本项目实现了A042-ST-GCN模型,用于对花样滑冰动作进行分类。花样滑冰作为一项融合了舞蹈与竞技的运动,其复杂的动作结构和多变的运动轨迹使得动作识别成为一个具有挑战性的任务。为此,本项目利用时空图卷积网络(Spatio-Temporal Graph Convolutional Networks,ST-GCN)进行动作分类。该模型通过对人体骨架的时空数据进行建模,能够有效捕捉动作的时序动态和空间关系,适用于识别花样滑冰中不同类型的动作。A042-ST-GCN是一种基于图卷积网络的架构,结合了时序信息和骨架数据的空间拓扑结构,使得模型能够在复杂的运动场景中具有较高的分类准确率。模型的输入为人体关键点的时序数据,输出为对应的动作类别标签。项目的最终目标是为花样滑冰选手和教练提供智能化的动作识别和分析工具,帮助他们更好地理解运动表现并优化训练策略。

2.技术创新点摘要

通过对项目代码的初步分析,可以得出A042-ST-GCN模型的几个技术创新点:

  1. 时空图卷积网络(ST-GCN)的引入:模型利用ST-GCN对花样滑冰动作进行分类。ST-GCN的优势在于其对人体骨骼关键点的时空动态进行有效建模,这使得模型能够捕捉动作的空间结构和时序特征。相比于传统的卷积神经网络(CNN),该模型能够更加准确地分析和分类人体复杂的运动轨迹,尤其是在花样滑冰这种高难度的体育项目中。
  2. 轻量化的网络结构设计:模型采用了简洁的网络结构,通过少量卷积核来实现动作分类,保持了较高的计算效率。由于整个模型的核心部分仅涉及三个卷积核,因此它在保证模型性能的同时,减少了计算资源的消耗,适合在实际应用场景中使用,尤其是需要实时识别花样滑冰动作时。
  3. 细粒度动作分类:花样滑冰动作分类任务的复杂性在于动作的细粒度分类。跳跃、旋转等动作的类别间差异较大,而同一类动作的内部变化较小。该模型通过对细粒度的分类和处理,使得它可以识别出不同类型的花样滑冰动作,尤其是难以区分的跳跃、旋转和组合动作。
  4. 人体关键点识别技术与动作分类的结合:该模型使用人体关键点检测技术,从视频中提取人体骨架关键点信息,再结合ST-GCN进行动作分类。这样使得模型能够更加精确地理解花样滑冰运动员的动作,从而提高分类的准确性。

在这里插入图片描述

3. 数据集与预处理

本项目使用的数据集是花样滑冰动作分类数据集,该数据集包含了大量关于花样滑冰运动员不同动作的视频片段。数据集中每个视频片段都标注了动作类型,并通过人体关键点提取技术获取了运动员的骨架坐标,形成了时序骨架数据。由于花样滑冰动作复杂多样,数据集涵盖了各种典型的花样滑冰动作,如跳跃、旋转、步伐和托举等。此外,该数据集的特点是动作类别多、细粒度高,类间方差大、类内方差小,这对模型的识别精度提出了较高要求。

在数据预处理中,首先需要对人体骨架的时序数据进行归一化处理。由于不同运动员的体型差异、视频拍摄角度不同,直接使用原始坐标会导致模型性能不稳定。为此,所有骨架点坐标都被归一化到一个统一的坐标系中,以消除这些外部因素的影响。

接下来进行数据增强,这在深度学习中尤为重要。通过对原始数据进行水平翻转、随机旋转、时序剪切等数据增强操作,能够有效增加训练数据的多样性,避免模型在训练过程中过拟合。此外,考虑到不同动作的时长不一致,时序数据经过了固定长度的裁剪或填充,保证每个输入样本的长度相同。

在特征工程方面,本项目主要使用了人体骨架的关键点坐标和这些关键点的速度、加速度等运动特征。通过提取这些时空特征,模型可以更好地捕捉动作的动态变化,并区分不同类别的动作。最终,经过预处理后的数据被送入ST-GCN模型进行训练和分类。

4. 模型架构

  1. 模型结构的逻辑: A042-ST-GCN模型基于时空图卷积网络(ST-GCN),该模型结合了图卷积网络(GCN)和时间卷积网络(TCN),用于人体骨架关键点的动作识别。模型的主要结构如下:
  • 输入层:模型的输入为人体骨架时序数据,每个样本包含多个时刻的骨架关键点坐标。每个骨架节点通过二维坐标 (x, y) 来表示。

  • 时空图卷积层:核心是通过时空图卷积对人体骨架的时空关系进行建模。骨架被表示为图 G=(V,E),其中 V 表示节点,即人体的关节点; E 表示边,即关节点之间的连接,包括空间边和时间边。

    • 空间卷积:在图中,空间卷积作用于同一时刻的关节点,公式为:
    • $$h_v^{(l+1)} = \sum_{u \in \mathcal{N}(v)} \frac{1}{\sqrt{d_v d_u}} W^{(l)} h_u^{(l)}$$
      
    • 其中, hv(l) 是第 lll 层节点 vvv 的特征, N(v)表示节点 vvv 的邻居节点集, W(l)是可学习的权重矩阵,dv 和 du分别是节点 v 和邻居节点 u 的度。
    • 时间卷积:时间卷积用于同一关节点在连续时刻的特征提取,公式为:
    • $$h_v^{(l+1)} = \sum_{t \in T} W^{(l)} h_v^{(l, t)}$$
      
    • 其中 T表示时间维度上的窗口,W(l)是时间卷积的可学习参数。
  • 全连接层:将卷积后的特征进行平展,通过全连接层映射为动作类别的概率分布。

  • 输出层:使用softmax函数输出动作分类的预测结果。

  1. 模型的整体训练流程
  • 前向传播:模型将输入的骨架关键点数据通过时空图卷积层进行处理,提取空间和时间维度上的特征。随后经过全连接层,将高维特征映射为具体的动作类别。
  • 损失函数:使用交叉熵损失函数计算预测类别与真实类别之间的误差:

T T TT TT

  • 其中 yi为真实标签,y^i为模型的预测概率。
  • 优化器:采用Adam优化器进行梯度下降,更新模型的权重。
  1. 评估指标
  • 准确率(Accuracy) :用于评估分类任务的性能,通过计算预测正确的样本占总样本的比例来衡量模型的分类效果。
  • 混淆矩阵:用于分析模型对各个动作类别的分类情况,判断模型是否对某些类别存在误分类。

5. 核心代码详细讲解

1. 数据预处理和特征工程:

提取骨骼点数据:

./build/examples/openpose/openpose.bin --video examples_video.avi --write_json output/ --display 0 --render_pose 0

解释:该命令使用OpenPose从视频中提取骨骼点数据。--video参数指定输入视频,--write_json将骨骼数据保存为JSON格式,--render_pose 0关闭骨骼渲染以提高处理速度。每一帧的骨骼点信息将被存储,供后续模型训练使用。

时空图卷积网络(ST-GCN)

class ST_GCN(nn.Module):def init(self, in_channels, num_class, edge_importance_weighting):super().__init__()# 图卷积层
        self.graph_conv = GraphConvolutionLayer(in_channels, out_channels)# 时间卷积层
        self.temporal_conv = nn.Conv2d(out_channels, out_channels, kernel_size=(9, 1), padding=(4, 0))# 全连接层
        self.fc = nn.Linear(out_channels, num_class)

GraphConvolutionLayer:定义图卷积层,用于捕捉人体关节点之间的空间依赖关系。

nn.Conv2d:时间卷积层,用于提取同一关节点在不同时间帧的动态变化。

fc:全连接层,将卷积后的特征映射到最终的分类标签。

  1. 模型训练与评估:

训练循环:

for epoch in range(num_epochs):
    model.train()for data, labels in train_loader:
        optimizer.zero_grad()
        outputs = model(data)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

解释:

model.train():设置模型为训练模式。

optimizer.zero_grad():清除之前计算的梯度。

outputs = model(data):将数据输入模型,获取预测结果。

loss.backward():反向传播计算梯度。

optimizer.step():更新模型参数。

6. 模型优缺点评价

模型优点:

  1. 时空特征捕捉能力强:A042-ST-GCN模型结合了图卷积和时间卷积,能够同时捕捉动作的空间结构和时间动态,特别适合处理像花样滑冰这种复杂的动作序列。
  2. 骨架数据高效建模:通过人体关键点骨架数据,模型减少了对背景、摄像角度等干扰因素的依赖,提升了动作识别的准确性和鲁棒性。
  3. 模型轻量:ST-GCN模型结构相对简洁,包含较少的卷积层,计算资源需求低,适合实时动作识别任务。
  4. 良好的泛化能力:模型在不同类型的动作数据上表现出较好的泛化能力,适用于多样化的动作分类场景。

模型缺点:

  1. 对数据质量敏感:模型依赖于准确的骨架关键点提取,因此在视频质量差、光照变化大或关节点遮挡的情况下,识别效果可能大幅下降。
  2. 缺乏对细节动作的处理能力:虽然ST-GCN能够捕捉全局的空间和时间特征,但对于一些细微的动作差异,如花样滑冰中跳跃和旋转的细节,模型仍可能存在误分类的情况。
  3. 超参数调优复杂:该模型的超参数(如卷积核大小、层数等)对性能影响较大,调优过程可能耗时且不易把握。

可能的改进方向:

  1. 模型结构优化:可以尝试引入注意力机制(如Self-Attention)来提升对细粒度动作的捕捉能力,特别是识别相似动作时的精度。
  2. 超参数调整:通过自动调参方法(如贝叶斯优化)寻找最佳超参数组合,进一步提升模型性能。
  3. 更多的数据增强方法:引入数据增强技术,如随机旋转、时序抖动等,增强模型的泛化能力,提升模型在不同环境中的表现。

↓↓↓更多热门推荐:

U-net网络实现细胞分割

查看全部项目数据集、代码、教程点击下方名片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/909513.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【RabbitMQ】03-交换机

1. 交换机 2. Fanout交换机 广播。生产者向exchange发消息 SpringBootTest public class SpringAmqpTest {Autowiredpublic RabbitTemplate rabbitTemplate;Testvoid testSimple() {String exchangName "hmall.fabout";rabbitTemplate.convertAndSend(exchangName…

【07】Maven项目多环境打包配置

(1)Web项目使用Maven进行多模块划分开发之后,面临一个问题,即如何加载不同环境的配置文件打包发布到不同的环境中? (2)不同的环境有开发环境、测试环境、线上生产环境等。 (3&#x…

【Unity Shader】Special Effects(十)Change 变换(UI)

源码:[点我获取源码] 索引 Change 变换思路分析变换进度噪声纹理闪烁闪烁时机闪烁颜色闪烁动画Change 变换 变换的效果为图像间的切换带来动感过程,使用动画播放器: 思路分析 首先,从原始图像变换到目标图像是一个从0到1的过程,这个过程我们命名为变换进度(0为完全显…

关于wordpress instagram feed 插件 (现更名为Smash Balloon Social Photo Feed)

插件地址: Smash Balloon Social Photo Feed – Easy Social Feeds Plugin – WordPress 插件 | WordPress.org China 简体中文 安装后,配置教程: Setting up the Instagram Feed Pro WordPress Plugin - Smash Balloon 从这里面开始看就…

JavaScript的对象事件处理程序

一、对象的事件 对象的事件是指在一个对象上发生的特定动作或状态改变。对象可以是现实世界中的物体、概念、数据结构等。根据对象的类型和功能,可能会有不同类型的事件。 对象的事件一般由对象的方法或属性来处理和触发。通过定义对象的方法和属性,可…

Win11 CLion Qt开发探索

文章目录 一、Win11 CLion Qt需要的环境二、环境说明三、Win11 CLion Qt 开发步骤四、CLion Qt CMake脚本相关配置4.1 在CLion里如何使用资源文件.qrc4.2 Qt6 cmake如何添加ts翻译文件 五、程序打包 本篇博客介绍在Win11上使用CLion来编写Qt QWidget项目。 视频讲解&#xff1a…

Windows Server2012 R2搭建NFS服务器

正文共:1024 字 23 图,预估阅读时间:1 分钟 在测试vCenter的集群操作时,出现了共享vSAN错误的问题,导致无法继续。我也只好先创建一个共享NFS(Network File System,网络文件系统)存储…

信息安全工程师(77)常见网络安全应急事件场景与处理流程

前言 网络安全应急事件场景多样,处理流程也需根据具体情况灵活调整。以下将详述几种常见的网络安全应急事件场景及其处理流程。 一、数据泄露事件 场景描述: 数据泄露是指敏感、受保护或机密数据被未经授权的个人复制、传输、查看、窃取或使用。这种事件…

win10下MMSegmentation自定义数据集

下载1.2.1版本: Releases open-mmlab/mmsegmentation GitHub 安装环境 本地torch环境为1.9.1 pip install -U openmim mim install mmengine mim install "mmcv>=2.0.0" 报mmcv版本不匹配的问题,形如:MMCV==X.X.X is used but incompatible. Please inst…

低代码解锁跨平台应用开发新境界

数字化转型中,企业面临应用开发挑战,低代码平台成为理想选择。ZohoCreator提供统一开发环境、拖拽设计、预置模板等,支持高效构建跨平台应用,确保数据安全与合规,助力企业数字化转型。 一、低代码平台是什么&#xff1…

yolov8涨点系列之C2f模块改进主分支

文章目录 C2F 模块介绍定义与基本原理应用场景 C2f模块修改步骤(1) C2f_up模块编辑(2)在__init_.pyblock.py中声明(3)在task.py中声明yolov8引入C2f_up模块yolov8.yamlyolov8.yaml引入C2f_up模块 C2f改进对YOLOv8检测具有多方面的好处 C2F 模块介绍 定义…

数据结构算法篇--递归(c语言版)

目录 1.递归 1.1求阶乘: 1.2.斐波那契数 1.3. 求幂 1.递归 在C语言中,递归是一种函数调用自身的方法,用来解决一些具有重复性质的问题。例如,计算阶乘、斐波那契数列等问题都可以通过递归实现。 递归在书写的时候&#xff0…

[大模型]视频生成-Sora简析

参考资料: Sora技术报告https://openai.com/index/video-generation-models-as-world-simulators/4分钟详细揭密!Sora视频生成模型原理https://www.bilibili.com/video/BV1AW421K7Ut 一、概述 相较于Gen-2、Stable Diffusion、Pika等生成模型的前辈&am…

【数据仓库】Hive 拉链表实践

背景 拉链表是一种数据模型,主要是针对数据仓库设计中表存储数据的方式而定义的;顾名思义,所谓拉链表,就是记录历史。记录一个事务从开始一直到当前状态的所有变化的信息。 拉链表可以避免按每一天存储所有记录造成的海量存储问题…

UnityAssetsBundle字体优化解决方案

Unity开发某个项目,打包后的apk包体已经高达1.25G了,这是非常离谱的。为了不影响用户体验,需要将apk包体缩小。因为项目本身不包含很多模型以及其他大型资源,排除法将AB包删除,发现app本身就100多M。 由此可以锁定是AB…

高通Quick板上安装编译Ros1 noetic,LeGO_LOAM,FAR_Planner和rslidar_sdk

环境要求: 这里quick板上安装的是Ubuntu20.04版本 Ros Noeti安装: 1.设置软件源: 官方提供的软件源: sudo sh -c echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.…

Qt多边形填充/不填充绘制

1 填充多边形绘制形式 void GraphicsPolygonItem::paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWidget *widget) {Q_UNUSED(option);Q_UNUSED(widget);//painter->setPen(pen()); // 设置默认画笔//painter->setBrush(brush()); // 设置默…

零基础学习Spring AI Java AI使用向量数据库postgresql 检索增强生成 RAG

零基础学习Spring AI Java AI使用向量数据库postgresql 检索增强生成 RAG 向量数据库是一种特殊类型的数据库,在人工智能应用中发挥着至关重要的作用。 在向量数据库中,查询与传统的关系数据库不同。它们不是进行精确匹配,而是执行相似性搜…

如何在 uniapp 中实现图形验证码

全篇大概2000 字(含代码),建议阅读时间10分钟。 什么是图形验证码? 图形验证码(也称为图片验证码或验证码图像)通常用于防止机器人自动提交表单,确保用户是人工操作。 一、需求 我们希望在一个…

mysql error:1449权限问题 及 用户授权

一、权限问题 Got error: 1449: The user specified as a definer (skip-grants userskip-grants host) does not exist when using LOCK TABLES 在迁移数据库时,定义的definer,在两个数据库之间不同步时,要将不存在的definer改成数据库中已…