【大语言模型】ACL2024论文-03 MAGE: 现实环境下机器生成文本检测

【大语言模型】ACL2024论文-03 MAGE: 现实环境下机器生成文本检测


目录

文章目录

  • 【大语言模型】ACL2024论文-03 MAGE: 现实环境下机器生成文本检测
    • 目录
      • 摘要
      • 研究背景
      • 问题与挑战
      • 如何解决
      • 核心创新点
      • 算法模型
      • 实验效果(包含重要数据与结论)
      • 主要参考工作
      • 后续优化方向
    • 后记


在这里插入图片描述

MAGE: 现实环境下机器生成文本检测

摘要

随着大型语言模型(LLMs)在文本生成方面的能力愈发接近人类水平,区分机器生成文本和人类撰写文本变得尤为重要。这项研究构建了一个大规模的现实测试平台,通过收集不同领域人类撰写的文本和由多种LLMs生成的深度伪造文本,探讨了深度伪造文本检测的挑战。研究发现,人类标注者在识别机器生成文本方面仅略优于随机猜测,而自动化检测方法在现实测试平台上面临挑战。此外,研究还发现,预训练语言模型(PLM)在所有测试平台上均获得了最高的性能,但在面对未见领域或新模型集生成的文本时性能下降。最后,研究通过调整决策边界显著提高了模型在现实场景下的性能,证明了深度伪造文本检测在现实世界中的可行性。

研究背景

近期,大型语言模型(LLMs)在文本生成方面取得了显著进展,使得机器生成的文本与人类撰写的文本之间的差异越来越小。这种能力缩小了人与机器在文本创作方面的差距,但也带来了诸如假新闻传播和抄袭等潜在风险。因此,检测深度伪造文本成为了一个重要的研究方向。
在这里插入图片描述

问题与挑战

在实际应用中,检测器需要面对来自不同领域或由不同LLMs生成的文本,而这些文本的来源对检测器来说是未知的。此外,检测器还需要能够识别未见领域或由新型LLMs生成的文本,这种跨领域和跨模型的检测能力对于实际应用尤为重要。

如何解决

研究者们构建了一个大规模的现实测试平台,通过收集不同领域的人类撰写文本和由多种LLMs生成的深度伪造文本,来模拟实际应用中的复杂情况。此外,研究还考虑了不同的检测方法,包括基于PLM的分类器、基于特征的分类器和零样本分类器,并在不同的测试平台上评估它们的性能。

核心创新点

  • 构建了一个大规模的现实测试平台,覆盖了多种写作任务和不同来源的文本。
  • 评估了多种自动化检测方法在现实测试平台上的性能,并探讨了跨领域和跨模型检测的挑战。
  • 发现PLM在所有测试平台上均获得了最高的性能,尤其是在未见领域或新模型集生成的文本检测上。
  • 通过调整决策边界显著提高了模型在现实场景下的性能,证明了深度伪造文本检测的可行性。

算法模型

研究中考虑了三种常用的文本分类器:

  1. PLM-based classifier:在数据集上微调Longformer模型,并添加分类层。
  2. Feature-based classifier:包括FastText和GLTR,前者使用词级二元模型作为特征,后者利用语言模型收集特征,如Top-10、Top-100和Top-1000排名的标记数量。
  3. Zero-shot classifier:DetectGPT,通过比较扰动文本的对数概率变化来检测文本,无需监督数据。

实验效果(包含重要数据与结论)

  • 人类标注者:在识别机器生成文本方面仅略优于随机猜测。
  • PLM-based classifier:在所有测试平台上均获得了最高的性能,AvgRec超过90%。
  • 跨领域和跨模型检测:PLM-based detector在未见领域检测上性能下降至68.40% AvgRec。
  • 决策边界调整:使用0.1%的领域内数据重新选择决策边界,将性能提高了13.38% AvgRec。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

主要参考工作

研究中引用了多个相关工作,包括:

  • 用于检测机器生成文本的统计边界方法。
  • 基于神经网络的检测器。
  • 语言模型中的水印技术,用于修改模型生成行为以便于检测。

后续优化方向

  • 提高跨领域和跨模型的检测能力:研究如何提高检测器在面对未见领域或新模型集时的性能。
  • 优化决策边界选择:探索更精细的方法来选择决策边界,以提高模型在现实场景下的性能。
  • 探索新的检测方法:研究新的或改进的算法,以提高深度伪造文本检测的准确性和鲁棒性。

后记

如果觉得我的博客对您有用,欢迎 打赏 支持!三连击 (点赞、收藏、关注和评论) 不迷路,我将持续为您带来计算机人工智能前沿技术(尤其是AI相关的大语言模型,深度学习和计算机视觉相关方向)最新学术论文及工程实践方面的内容分享,助力您更快更准更系统地了解 AI前沿技术

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/908335.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

A012-基于Spring Boot的私房菜定制上门服务系统的设计与实现

摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统私房菜定制上门服务系统信息管理难度大,容错率…

ios 快捷指令扩展(Intents Extension)简单使用 swift语言

本文介绍使用Xcode15 建立快捷指令的Extension,并描述如何修改快捷指令的IntentHandler,带参数跳转主应用;以及展示多个选项的快捷指令弹框(配置intentdefinition文件),点击选项带参数跳到主应用的方法 创建快捷指令 快捷指令是…

【MacOS实操】如何基于SSH连接远程linux服务器

MacOS上远程连接linux服务器,可以使用ssh命令pem秘钥文件连接。 一、准备pem秘钥文件 如果已经有pem文件,则跳过这一步。如果手上有ppk文件,那么需要先转换为pem文件。 macOS 的默认 SSH 客户端不支持 PPK 格式,你需要将 PPK 文…

Puppeteer点击系统:解锁百度流量点击率提升的解决案例

在数字营销领域,流量和搜索引擎优化(SEO)是提升网站可见性的关键。我开发了一个基于Puppeteer的点击系统,旨在自动化地提升百度流量点击率。本文将介绍这个系统如何通过模拟真实用户行为,优化关键词排名,并…

Golang | Leetcode Golang题解之第524题通过删除字母匹配到字典里最长单词

题目: 题解: func findLongestWord(s string, dictionary []string) (ans string) {m : len(s)f : make([][26]int, m1)for i : range f[m] {f[m][i] m}for i : m - 1; i > 0; i-- {f[i] f[i1]f[i][s[i]-a] i}outer:for _, t : range dictionary …

019集——获取CAD图中多个实体的包围盒(CAD—C#二次开发入门)

如下图所示,获取多个实体的最大包围盒,用红色线表示: 也可单独选圆的包围盒 部分代码如下: using Autodesk.AutoCAD.ApplicationServices; using Autodesk.AutoCAD.DatabaseServices; using Autodesk.AutoCAD.Geometry; using A…

【快速上手】pyspark 集群环境下的搭建(Yarn模式)

目录 前言: 一、安装步骤 安装前准备 1.第一步:安装python 2.第二步:在bigdata01上安装spark 3.第三步:同步bigdata01中的spark到bigdata02和03上 二、启动 三、可打开yarn界面查看任务 前言: 上一篇介绍的是…

sublime python出现中文乱码怎么办

一、乱码现象 利用sublime自带编译快捷方式ctrlB会出现中文乱码的情况。 print("没有循环数据!") print("完成循环!") 二、寻找原因 1、由于之前我已经安装了插件ConvertToUTF8,排除文本编码错误问题。 2、相同的代码在插件sublimerepl搭建的…

第三届北京国际水利科技博览会将于25年3月在国家会议中心召开

由中国农业节水和农村供水技术协会、北京水利学会、振威国际会展集团等单位联合主办的第三届北京国际水利科技博览会暨供水技术与设备展(北京水利展)将于2025年3月31日至4月2日在北京•国家会议中心举办! 博览会以“新制造、新服务、新业态”…

RHCE DNS

DNS DNS1.1 DNS介绍1.2 安装bind,配置文件1.3 正向解析文件模板1.4 反向解析文件模板1.5 转发服务器实验1.6 解析web服务器实验1.7 区域传送克隆虚拟机 DNS 1.1 DNS介绍 DNS系统 域名系统(DNS)是一个分层的分布式数据库。它存储用于将Inter…

JSON交互处理

目录 一、什么是JSON 二、JSON和JavaScript对象互转 ​三、Controller返回JSON数据 3.1 使用Jackson 编写Controller 1. 一个对象 2. 多个对象 3. 输出时间对象 4. 优化:抽取为工具类 一、什么是JSON Json是JavaScript对象的字符串表示法,它用…

GeoSever发布图层(保姆姬)

发布服务的具体步骤。 1. 安装 GeoServer 下载 GeoServer 安装包:GeoServer 官网按照安装说明进行安装,可以选择 Windows、Linux 或其他平台。 2. 启动 GeoServer 启动 GeoServer 通常通过访问 http://localhost:8080/geoserver 进行。默认用户名和密…

Linux中断、软中断、MMU内存映射-深入理解

中断: Linux中,中断上半部不能嵌套,如果一直保存上下文,栈可能会溢出。中断上半部处理紧急事情,下半部处理非紧急事情。下半部通常通过软中断来实现。在上半部执行完后会执行下半部的软中断,如果囤积了A和…

讲讲 kafka 维护消费状态跟踪的方法?

大家好,我是锋哥。今天分享关于【讲讲 kafka 维护消费状态跟踪的方法?】面试题?希望对大家有帮助; 讲讲 kafka 维护消费状态跟踪的方法? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Kafka 中&#x…

CodeS:构建用于文本到 SQL 的开源语言模型

发布于:2024 年 10 月 29 日 #RAG #Text2 SQL #NL2 SQL 语言模型在将自然语言问题转换为 SQL 查询(文本到 SQL )的任务中显示出良好的性能。然而,大多数最先进的 (SOTA) 方法都依赖于强大但闭源的大型语言…

深入浅出 Spring Boot 与 Shiro:构建安全认证与权限管理框架

一、Shiro框架概念 (一)Shiro框架概念 1.概念: Shiro是apache旗下一个开源安全框架,它对软件系统中的安全认证相关功能进行了封装,实现了用户身份认证,权限授权、加密、会话管理等功能,组成一…

「Mac畅玩鸿蒙与硬件17」鸿蒙UI组件篇7 - Animation 组件基础

在应用开发中,动画效果可以增强用户体验。鸿蒙框架提供了 translate、scale 和 rotate 等动画功能,允许对组件进行平移、缩放和旋转等操作。本篇将介绍 Animation 组件的基础知识和示例代码。 关键词 Animation 组件动画效果位置动画自动动画缩放动画 一…

详解:模板设计模式

模板设计模式(Template Pattern)是一种行为设计模式,在软件设计中有着广泛的应用,旨在提高代码的可维护性和可复用性。 一、定义与特点 定义: 模板设计模式定义了一个算法的骨架,将某些步骤推迟到子类中实…

Java中的时区和带时区的时间对象:ZoneId类、ZonedDateTime类

在 Java 中,ZoneId 和 ZonedDateTime 是处理时区和带时区日期时间的重要类,它们属于 java.time 包,这个包是在 Java 8 中引入的,用于替代旧的日期和时间 API(java.util.Date、java.util.Calendar 等)。 1、…

微积分复习笔记 Calculus Volume 1 - 4.5 Derivatives and the Shape of a Graph

4.5 Derivatives and the Shape of a Graph - Calculus Volume 1 | OpenStax