LLC Power Switches and Resonant Tank 笔记

1.概述

7930c2e5200c4b3982c3a61947fa74ad.png

上面是一个典型的LLC电路。注意Lm是励磁电感,就是次级线圈空载时的主变压器电感,据说在计算谐振频率时无需关心。然后,作为DCDC电源,它通过调整谐振频率,来改变输出的电流。负载越大,频率越低,输出电流越大。

本文基于:By Tomas Hudson, Applications Engineer at MPS的两篇技术笔记,分别是:

  • Understanding LLC Operation (Part I): Power Switches and Resonant Tank
  • Understanding LLC Operation (Part II): What to Consider in LLC Converter Design

谐振式DCDC功率电路的四大模块:

  1. the power switches,
  2. resonant tank,
  3. transformer,
  4. and diode rectifier

其实还有一个是PFC补偿电路,这部分没有提及。

2.Power Switch的全桥和半桥的区别

41cec57b1ae946f7a2bfcb381681ce39.png

 

注意半桥把Vpp——in 压缩了一半。全桥可以减少铜损。注意在参数解算时要要留神这个额外的整流倍率。
3f933d6e4e834d2d87c11a4e14254bc0.png谐振电路,它提到增益必须大于1,注意,这里的增益是电路的总体增益,就是端到端的整体增益。它利用了谐振电路,在接近谐振频率,整体电抗下降的特性。

电路在不同负载下的增益如图所示 :

4a18698d6c7348c1ac90dcb9260b817b.png

负载电阻越小,输出功率越大,整个谐振电路的整体增益会下降,因为反馈到谐振电路的能量衰减更快。

整个负反馈自动调节的原则是,因为整个电路是个压控负反馈。一旦轻载,则整体增益曲线,类似那个品质因数更大,增益在原有的工作频点处会提升,为了保持输出电压稳定,所以,开关频率会增大——它知道频率增大,系统整体增益会下降。

系统在各种负载条件下,始终工作在谐振频率的远端(高频端)。

3.LLC能够适应不同负载的原因:

这部分原理没看清楚,待续

ce1e43feb7e240388b043009b84657cc.png

 如果只有Lr

7b4e2e806f2342dea8ee88e332e3f6cc.png

4.电路的基本参数计算:

1bb2ebfb367e42d98163401e1adb77c4.png

fn,Ln把电路的参数似乎归一化了。然后表述的意思是,电路似乎不必工作在谐振频点。

所以,才会有之前绘制的增益图。

5.增益问题

 MG(Q,LN,fN) = VOUT[AC] VIN[AC] fN 2×(LN-1) = (fN 2-1)2 + fN 2× (fN 2-1)× (LN-1)2× Q2 (1) The transformer’s gain is defined by the ratio of the number of turns in the transformer’s primary coil to the turns in the secondary coil. Because this ratio is defined by the physical construction of the transformer, it cannot be easily changed once the converter is operating.

它表达的意思似乎是这个增益曲线,一旦电路参数确定,就已经确定了。

cb73cc89af8d4e0ca3e78d870094df68.png

 5.1 为了适应电源变化的增益调节范围: 

592471024c14431fbc07ea15ffa6b4a0.png

输入电源电压改变,是在增益曲线确定的情况下,工作频点,在整体增益曲线上的相对位置。

5.2 从品质因数的视角,看各个负载条件下的增益:

f225a3c855964b8ca71c3003ff51f2ce.png 这个与目前观察到的系统不同负载下的频率范围是差不多的。

负载变化,谐振电路的品质因数会变化,Q值会被拉低。

6.总体的参数设计原则:

总结一下,参看下图:

为啥红色区域不能碰,也就是所谓的容性区不可进入?

注意,红色区域内的那条红色的虚线对应着不同负载条件下的谐振频点轨迹。原因是电感一旦超限使用,主变会因为磁场饱和,电流会迅速过流。增益曲线的红色部分没有考虑磁芯饱和的问题。

922fdf7ef6bf41b5a5fb45da7b9db8f2.png

1.fmin对应最高负载下的谐振频点。(这个时候对应着系统最大负载下的谐振点)。

2.MGmax - MGmin对应着输入电压的波动。(此时增益曲线是同一条)

3.当负载变轻时,谐振电路的品质因数在上升,也就是谐振状态的增益会上升。此时因为电压反馈电路要保持Vin/Vout稳定,此时,系统实际工作频点会外移,降低增益水平

4.当输入电源电压上升时,此时因为输出电压会随着升压,此时系统的整体增益也要下调,所以,也会提高开关频率,把增益降下来,这个时候,工作频率也会外移。对应的是MGmax ->MGmin的方向。

5.负载的改变会让整个系统的增益曲线改变,大负载,谐振状态的增益更低。也就是谐振电路的Q值更小

6.然后电源电压的改变,会让系统的工作频率,在明确的增益曲线上移动,来找到单条增益曲线上能够稳定住输出电压的点。

7.LLC电路参数的计算的核心目标:

1.算出最高负载条件下的谐振频率。fMin. MGmax是确定的。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/907123.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

项目模块十三:Util模块

一、项目设计思路 用于之后协议使用的工具类 二、静态成员函数 1、分割函数 static size_t Split(const string &src, const string &sep, vector<string> *array) string.find(const string &str, size_t pos 0) string.substr(size_t pos 0, size_t…

Chrome与夸克谁更节省系统资源

在当今数字化时代&#xff0c;浏览器已经成为我们日常生活中不可或缺的一部分。无论是工作、学习还是娱乐&#xff0c;我们都依赖于浏览器来访问互联网。然而&#xff0c;不同的浏览器在性能和资源消耗方面存在差异。本文将探讨Chrome和夸克两款浏览器在系统资源消耗方面的表现…

Qt第三课 ----------输入类的控件属性

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…

后端:Spring、Spring Boot-实例化Bean依赖注入(DI)

文章目录 1. 实例化Bean2. 使用FactoryBean3. 依赖注入(DI)3.1 AutoWired 属性注入(查找顺序&#xff1a;先类型&#xff0c;后名字)3.2 AutoWired 在构造函数&参数上的使用3.3 Inject和Resource 进行依赖注入3.4 Value 进行注入 1. 实例化Bean 默认使用无参构造函数&…

qt QPicture详解

1、概述 QPicture类是Qt框架中的一个重要图形类&#xff0c;它主要用于记录和回放QPainter的绘图指令。这个类能够跨平台、无分辨率依赖地绘制图形&#xff0c;非常适合用于实现打印预览和图像操作等场景。QPicture可以将绘图操作序列化为一种独立于平台的格式&#xff0c;保存…

【计算机网络教程】课程 章节测试1 计算机网络概述

一. 单选题&#xff08;共16题&#xff09; 1 【单选题】以下关于TCP/IP参考模型缺点的描述中&#xff0c;错误的是&#xff08; &#xff09;。 A、在服务、接口与协议的区别上不很清楚 B、网络接口层本身并不是实际的一层 C、它不能区分数据链路和物理层 D、传输层对…

金融标准体系

目录 基本原则 标准体系结构图 标准明细表 金融标准体系下载地址 基本原则 需求引领、顶层设计。 坚持目标导向、问题导向、结果 导向有机统一&#xff0c;构建支撑适用、体系完善、科学合理的金融 标准体系。 全面系统、重点突出。 以金融业运用有效、保护有力、 管理高…

Linux练习作业

1.搭建dns服务器能够对自定义的正向或者反向域完成数据解析查询。 2.配置从DNS服务器&#xff0c;对主dns服务器进行数据备份 环境准备 主从服务器都需要进行的操作#关闭防火墙、SELinnux systemctl stop firewalld setenforce 0#软件安装 yum install bind -y实验一&#…

【STL_list 模拟】——打造属于自己的高效链表容器

一、list节点 ​ list是一个双向循环带头的链表&#xff0c;所以链表节点结构如下&#xff1a; template<class T>struct ListNode{T val;ListNode* next;ListNode* prve;ListNode(int x){val x;next prve this;}};二、list迭代器 2.1、list迭代器与vector迭代器区别…

《Qwen2-VL》论文精读【上】:发表于2024年10月 Qwen2-VL 迅速崛起 | 性能与GPT-4o和Claude3.5相当

1、论文地址Qwen2-VL: Enhancing Vision-Language Model’s Perception of the World at Any Resolution 2、Qwen2-VL的Github仓库地址 该论文发表于2024年4月&#xff0c;是Qwen2-VL的续作&#xff0c;截止2024年11月&#xff0c;引用数24 文章目录 1 论文摘要2 引言3 实验3.…

LiveQing视频点播流媒体RTMP推流服务功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大

LiveQing视频点播流媒体RTMP推流服务功能-支持电子放大拉框放大直播视频拉框放大录像视频流拉框放大电子放大 1、鉴权直播2、视频点播3、RTMP推流视频直播和点播流媒体服务 1、鉴权直播 云直播服务-》鉴权直播 -》播放 &#xff0c;左键单击可以拉取矩形框&#xff0c;放大选中…

Zypher Research:服务器抽象叙事,GameFi 赛道的下一个热点?

继链抽象、账户抽象的概念后&#xff0c;Zypher Network 进一步提出了服务器抽象的概念&#xff0c;并基于 zk 技术率先推出了应用于 Web3 游戏领域的服务器抽象方案。基于该方案&#xff0c;游戏开发者能够在完全去中心化的环境下创建、运行游戏&#xff0c;而不需要依赖传统的…

【SpringCloud详细教程】-01-一文了解微服务

精品专题&#xff1a; 01.《C语言从不挂科到高绩点》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12753294.html?spm1001.2014.3001.5482 02. 《SpringBoot详细教程》课程详细笔记 https://blog.csdn.net/yueyehuguang/category_12789841.html?spm1001.20…

在使用 AMD GPU 的 PyTorch 中实现自动混合精度

Automatic mixed precision in PyTorch using AMD GPUs — ROCm Blogs 随着模型规模的增加&#xff0c;训练它们所需的时间和内存——以及因此而产生的成本——也在增加。因此&#xff0c;采取任何措施来减少训练时间和内存使用都是非常有益的。这就是自动混合精度&#xff08;…

基于布局的3D场景生成技术:SceneCraft

1. 概述 随着室内设计和虚拟现实技术的快速发展,快速生成高质量的3D室内场景成为行业需求的重要方向。SceneCraft是一种新型的3D场景生成技术,旨在根据用户提供的布局和文本描述,一键生成详细的室内3D场景。该技术不仅简化了设计流程,还大大提高了设计效率和用户体验。 2…

【Python爬虫实战】深入解析 Selenium:从元素定位到节点交互的完整自动化指南

#1024程序员节&#xff5c;征文# &#x1f308;个人主页&#xff1a;易辰君-CSDN博客 &#x1f525; 系列专栏&#xff1a;https://blog.csdn.net/2401_86688088/category_12797772.html ​ 前言 Selenium 是进行网页自动化操作的强大工具&#xff0c;在测试、数据抓取、用户行…

数据库->联合查询

目录 一、联合查询 1.联合查询 2.多表联合查询时MYSQL内部是如何进⾏计算的 3.多表联合查询 3.1语法 3.2指定多个表&#xff0c;进行联合查询 3.3通过表与表中的链接条件过滤掉无效数据 3.4通过指定列查询&#xff0c;精简查询结果​编辑 3.5可以通过给表起别名的方式&…

k8s知识点总结

docker 名称空间 分类 Docker中的名称空间用于提供进程隔离&#xff0c;确保容器之间的资源相互独立。主要分类包括&#xff1a; PID Namespace&#xff1a;进程ID隔离&#xff0c;使每个容器有自己的进程树&#xff0c;容器内的进程不会干扰其他容器或主机上的进程。 NET Nam…

C++11(1)——右值引用、统一初始化、C++发展史

一、C的发展史 1.C的产生 C的起源可以追溯到1979年&#xff0c;当时本贾尼&#xff08;C创始人&#xff09;在贝尔实验室从事计算机科学与软件工程的研究工作。面对项目中复杂的软件开发任务&#xff0c;特别是模拟和操作系统的开发工作&#xff0c;他感受到了现有语言&#…

计算机毕业设计Spark+大模型知识图谱中药推荐系统 中药数据分析可视化大屏 中药爬虫 机器学习 中药预测系统 中药情感分析 大数据毕业设计

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…