C语言:代码运行的底层奥秘,编译和链接

目录

  • 翻译环境和运行环境
  • 编译环境
    • 预编译(预处理)
    • 编译
      • 词法分析
      • 语法分析
      • 语义分析
    • 汇编
  • 链接
  • 运行环境

翻译环境和运行环境

在ANSI C的任何⼀种实现中,存在两个不同的环境。
第1种是翻译环境,在这个环境中源代码被转换为可执行的机器指令(⼆进制指令)。
第2种是执行环境,它用于实际执行代码。
在这里插入图片描述

编译环境

翻译环境又分为两个,分别是编译环境和链接环境。
而编译又可以分解成:预处理(有些书也叫预编译)、编译、汇编三个过程。
在这里插入图片描述
⼀个C语言的项目中可能有多个 .c 文件⼀起构建,那多个 .c 文件如何生成可执行程序呢?
• 多个.c文件单独经过编译器,编译处理生成对应的目标文件。
• 注:在Windows环境下的目标文件的后缀是 .obj ,Linux环境下目标文件的后缀是 .o
• 多个目标文件和链接库⼀起经过链接器处理⽣成最终的可执行程序。
• 链接库是指运行时库(它是支持程序运行的基本函数集合)或者第三⽅库。
具体的流程可以参考下图。
在这里插入图片描述

预编译(预处理)

在预处理阶段,源文件和头文件会被处理成为 .i 为后缀的文件。
在 gcc 环境下观察,对 test.c 文件预处理后的.i文件,命令如下:

gcc -E test.c -o test.i

预处理阶段主要处理那些源⽂件中#开始的预编译指令。⽐如:#include,#define,处理的规则如下:
• 将所有的 #define 删除,并展开所有的宏定义。
• 处理所有的条件编译指令,如: #if、#ifdef、#else、#endif、#endif 。
• 处理#include 预编译指令,将包含的头文件的内容插入到该预编译指令的位置。这个过程是递归进行的,也就是说被包含的头文件也可能包含其他文件。
• 删除所有的注释
• 添加行号和文件名标识,方便后续编译器生成调试信息等。
• 或保留所有的#pragma的编译器指令,编译器后续会使用。
经过预处理后的 .i 文件中不再包含宏定义,因为宏已经被展开。并且包含的头文件都被插入到 .i文件中。所以当我们无法知道宏定义或者头文件是否包含正确的时候,可以查看预处理后的 .i 文件来确认。
例如:

#include<stdio.h>
//呵呵
#define M 100
int main()
{
	int x = 0;
	x = M;
	return 0;
}

预编译后:
上面那些#代表的是头文件编译后的内容,及stdio.h的内容插入到.c文件内,因条件有限,没法给各位具体呈现一下了。

###########
###########
###########
###########
###########
###########
###########
###########
//这里的注释被删掉了,原来是“呵呵”
//展开宏后这里的“define M 100”也被删除
int main()
{
	int x = 0;
	x = 100;
	return 0;
}

这里将那行注释删除,留下了一行空格,然后“x=M”中的M也由100直接替换。

编译

编译过程就是将预处理后的文件进行⼀系列的:词法分析、语法分析、语义分析及优化,生成相应的汇编代码文件。
编译命令如下:

gcc -S test.i -o test.s

举个例子来分析一下:
对下面这句代码进行编译。

array[index] = (index+4)*(2+6);

词法分析

将源代码程序被输⼊扫描器,扫描器的任务就是简单的进行词法分析,把代码中的字符分割成⼀系列的记号(关键字、标识符、字面量、特殊字符等)。
上面程序进行词法分析后得到了16个记号:
在这里插入图片描述

语法分析

接下来语法分析器,将对扫描产⽣的记号进行语法分析,从而产⽣语法树。这些语法树是以表达式为节点的树。
在这里插入图片描述

语义分析

由语义分析器来完成语义分析,即对表达式的语法层面分析。编译器所能做的分析是语义的静态分析。静态语义分析通常包括声明和类型的匹配,类型的转换等。这个阶段会报告错误的语法信息。

array[index] = (index+4)*(2+6);

在这里插入图片描述

汇编

汇编器是将汇编代码转变成机器可执行的指令,每⼀个汇编语句几乎都对应⼀条机器指令。就是根据汇编指令和机器指令的对照表⼀⼀的进行翻译,也不做指令优化。
汇编的命令如下:

gcc -c test.s -o test.o

链接

链接是⼀个复杂的过程,链接的时候需要把⼀堆文件链接在⼀起才生成可执行程序。
链接过程主要包括:地址和空间分配,符号决议和重定位等这些步骤。
链接解决的是⼀个项目中多文件、多模块之间互相调用的问题。
比如:
在⼀个C的项目中有2个.c文件( test.c 和 add.c ),代码如下:
add.c

int g_val = 2022;
int Add(int x, int y)
{
 return x+y;
}

test.c

#include <stdio.h>
//test.c
//声明外部函数
extern int Add(int x, int y);
//声明外部的全局变量
extern int g_val;
int main()
{
 int a = 10;
 int b = 20;
 int sum = Add(a, b);
 printf("%d\n", sum);
 return 0;
}

我们已经知道,每个源文件都是单独经过编译器处理生成对应的目标文件。
test.c 经过编译器处理生成 test.o
add.c 经过编译器处理生成 add.o
我们在 test.c 的文件中使用了 add.c 文件中的 Add 函数和 g_val 变量。
我们在 test.c 文件中每⼀次使用 Add 函数和 g_val 的时候必须确切的知道 Add 和 g_val 的地址,但是由于每个文件是单独编译的,在编译器编译 test.c 的时候并不知道 Add 函数和 g_val变量的地址,所以暂时把调用 Add 的指令的目标地址和 g_val 的地址搁置。即(Add的地址暂存为空地址):

ADD=0x0000

等待最后链接的时候由链接器根据引用的符号 Add 在其他模块中查找 Add 函数的地址,然后将 test.c 中所有引用到Add 的指令重新修正(相当于重新给Add的地址赋值),让他们的目标地址为真正的 Add 函数的地址,对于全局变量 g_val 也是类似的方法来修正地址。这个地址修正的过程也被叫做:重定位。

运行环境

  1. 程序必须载入内存中。在有操作系统的环境中:⼀般这个由操作系统完成。在独立的环境中,程序的载人必须由手工安排,也可能是通过可执行代码置入只读内存来完成。(比如嵌入式)
  2. 程序的执行便开始。接着便调用main函数。
  3. 开始执行程序代码。这个时候程序将使用⼀个运行时堆栈(stack),存储函数的局部变量和返回地址。程序同时也可以使用静态(static)内存,存储于静态内存中的变量在程序的整个执行过程⼀直保留他们的值。
  4. 终止程序。正常终止main函数;也有可能是意外终止。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/904192.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024 FinTechathon 校园行:助力高校学生探索金融科技创新

在金融科技蓬勃发展的当下&#xff0c;人才培养成为推动行业前行的关键。为推进深圳市金融科技人才高地建设&#xff0c;向高校学子提供一个展示自身知识、能力和创意的平台&#xff0c;2024 FinTechathon 深圳国际金融科技大赛——西丽湖金融科技大学生挑战赛重磅开启&#xf…

第7章 内容共享

第 7 章 内容共享 bilibili学习地址 github代码地址 本章介绍Android不同应用之间共享内容的具体方式&#xff0c;主要包括&#xff1a;如何利用内容组件在应用之间共享数据&#xff0c;如何使用内容组件获取系统的通讯信息&#xff0c;如何借助文件提供器在应用之间共享文件…

控制台安全内部:创新如何塑造未来的硬件保护

在 Help Net Security 的采访中&#xff0c;安全研究人员 Specter 和 ChendoChap 讨论了游戏机独特的安全模型&#xff0c;并强调了它与其他消费设备的不同之处。 他们还分享了对游戏机安全性的进步将如何影响未来消费者和企业硬件设计的看法。 斯佩克特 (Specter) 是本周在阿…

开源项目-投票管理系统

哈喽&#xff0c;大家好&#xff0c;今天主要给大家带来一个开源项目-投票管理系统 投票管理系统主要有首页&#xff0c;发起投票&#xff0c;管理投票&#xff0c;参与投票&#xff0c;查看投票等功能 首页 为用户提供了一键导航到各个功能模块的便捷途径。 新增投票 用户…

Unity 两篇文章熟悉所有编辑器拓展关键类 (上)

本专栏基础资源来自唐老狮和siki学院&#xff0c;仅作学习交流使用&#xff0c;不作任何商业用途&#xff0c;吃水不忘打井人&#xff0c;谨遵教诲 编辑器扩展内容实在是太多太多了&#xff08;本篇就有五千字&#xff09; 所以分为两个篇章而且只用一些常用api举例&#xff0c…

rnn/lstm

tip&#xff1a;本人比较小白&#xff0c;看到july大佬的文章受益匪浅&#xff0c;现在其文章基础上加上自己的归纳、理解&#xff0c;以及gpt的答疑&#xff0c;如果有侵权会删。 july大佬文章来源&#xff1a;如何从RNN起步&#xff0c;一步一步通俗理解LSTM_rnn lstm-CSDN博…

【Docker大揭秘】

Docker 调试一天的血与泪的教训&#xff1a;设备条件&#xff1a;对应的build preparation相应的报错以及修改 作为记录 构建FASTLIO2启动docker获取镜像列出镜像运行containerdocker中实现宿主机与container中的文件互传 调试一天的血与泪的教训&#xff1a; 在DOCKER中跑通F…

APISQL企业版离线部署教程

针对政务、国企、医院、军工等内网物理隔离的客户&#xff0c;有时需要多次摆渡才能到达要安装软件的服务器。本教程将指导您使用Linux和Docker Compose编排服务&#xff0c;实现APISQL的离线部署。 准备 准备一台Linux(x86_64)服务器。 安装Docker Engine&#xff08;推荐版本…

音视频入门基础:AAC专题(11)——AudioSpecificConfig简介

音视频入门基础&#xff1a;AAC专题系列文章&#xff1a; 音视频入门基础&#xff1a;AAC专题&#xff08;1&#xff09;——AAC官方文档下载 音视频入门基础&#xff1a;AAC专题&#xff08;2&#xff09;——使用FFmpeg命令生成AAC裸流文件 音视频入门基础&#xff1a;AAC…

docker 可用镜像服务地址(2024.10.25亲测可用)

1.错误 Error response from daemon: Get “https://registry-1.docker.io/v2/” 原因&#xff1a;镜像服务器地址不可用。 2.可用地址 编辑daemon.json&#xff1a; vi /etc/docker/daemon.json内容修改如下&#xff1a; {"registry-mirrors": ["https://…

【AI应用落地实战】智能文档处理本地部署——可视化文档解析前端TextIn ParseX实践

湘江之畔&#xff0c;秋风送爽。前不久&#xff0c;2024长沙中国1024程序员节在长沙盛大举行。今年的程序员节主题为“智能应用新生态”&#xff0c;以科技为纽带&#xff0c;搭建起了一个共筑智能应用新生态的交流平台&#xff0c;众多技术大咖齐聚一堂&#xff0c;探讨智能应…

echarts实现 水库高程模拟图表

需求背景解决思路解决效果index.vue 需求背景 需要做一个水库高程模拟的图表&#xff0c;x轴是水平距离&#xff0c;y轴是高程&#xff0c;需要模拟改水库的形状 echarts 图表集链接 解决思路 配合ui切图&#xff0c;模拟水库形状 解决效果 index.vue <!--/*** author:…

Kubeadm搭建k8s

一、架构 节点名称规格IP地址安装组件master012C/4G&#xff0c;cpu核心数要求大于2192.168.88.76docker、kubeadm、kubelet、kubectl、flannelnode012C/2G192.168.88.20docker、kubeadm、kubelet、kubectl、flannelnode022C/2G192.168.88.21docker、kubeadm、kubelet、kubect…

transformers和bert实现微博情感分类模型提升

项目源码获取方式见文章末尾&#xff01; 600多个深度学习项目资料&#xff0c;快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【LSTM模型实现光伏发电功率的预测】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模…

【Apache Zookeeper】

一、简介 1、场景 如何让⼀个应⽤中多个独⽴的程序协同⼯作是⼀件⾮常困难的事情。开发这样的应⽤&#xff0c;很容易让很多开发⼈员陷⼊如何使多个程序协同⼯作的逻辑中&#xff0c;最后导致没有时间更好地思考和实现他们⾃⼰的应⽤程序逻辑&#xff1b;又或者开发⼈员对协同…

了解lwip

lwIP是一个小型的开源的TCP/IP协议栈&#xff08;精简版的TCP/IP协议&#xff09;&#xff0c;博客借用了其他博客的内容在此声明。 TCP/IP协议栈结构 应用层&#xff1a;HTTP,MQTT,NTP、FTP....... 传输层:TCP协议&#xff08;用于不可靠设备可靠传输&#xff09;&#xff…

基于Springboot+微信小程序的房产交易租赁服务平台设计与实现 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 该系统…

《Linux运维总结:基于ARM64+X86_64架构CPU使用docker-compose一键离线部署redis 6.2.14容器版哨兵集群》

总结&#xff1a;整理不易&#xff0c;如果对你有帮助&#xff0c;可否点赞关注一下&#xff1f; 更多详细内容请参考&#xff1a;《Linux运维篇&#xff1a;Linux系统运维指南》 一、部署背景 由于业务系统的特殊性&#xff0c;我们需要面向不通的客户安装我们的业务系统&…

【计算机网络 - 基础问题】每日 3 题(五十九)

✍个人博客&#xff1a;https://blog.csdn.net/Newin2020?typeblog &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞…

Dolphins 简介——一种新颖的多模态语言模型

背景问题 现在的自动驾驶系统在处理复杂的多变的现实驾驶场景时&#xff0c;往往缺乏人类驾驶员的全面理解&#xff0c;及时学习和适应能力以及错误纠正能力&#xff0c;为了实现能够像人类一样理解和响应复杂现实世界场景的完全自主车辆(AV)一直是一个重要目标。Dolphins 是一…