智联招聘×Milvus:向量召回技术提升招聘匹配效率

6076e7a9877e6c6d2cff6dcb448362b6.png

a9c969c486f13d8f0d7dee018d9bbb78.png

01.

业务背景

在智联招聘平台,求职者和招聘者之间的高效匹配至关重要。招聘者可以发布职位寻找合适的人才,求职者则通过上传简历寻找合适的工作。在这种复杂的场景中,我们的核心目标是为双方提供精准的匹配结果。在搜索推荐场景下,候选人或职位列表会经历召回、粗排、精排和重排等多个阶段,从亿级别的候选集中筛选出最匹配的简历或职位进行展示。在召回阶段我们除了使用传统的规则召回外,还引入了向量召回方式。本次我们主要介绍一种向量召回方式:通过职位召回简历(JD2CV)。为了便于讨论,文中将职位简写为JD,简历简写为CV。

02.

向量召回实现方式

1. 模型训练样本选择:

正样本来自系统日志中有正向交互的JD CV对。负样本由三部分组成:一部分是batch内负采样,第二部分来自全库的随机负采样,全库采样能够更好地模拟实际召回场景。第三部分,我们根据业务规则,选取了一些hard负样本,以提高模型的训练效果。

2. 模型结构:

我们采用了双塔模型结构,分别处理JD和CV的文本信息,将其映射为低维向量。通过计算向量间的相似度,并应用对比学习的损失函数进行优化,使得相关的JD和CV向量距离更近,而非相关的则距离更远。这种方式能有效提高匹配的精度。

3. 模型离线测评:

第一种评估方式是使用模型预测给定的正负样本对,进而计算AUC和JD维度的GAUC。然而,这种评估方式局限于有限样本集,难以全面反映召回模型的真实表现。为了获得更接近线上环境的评估结果,我们采用了一种新的评估方式,分为两个步骤:首先,进行实际的召回操作;其次,对召回结果进行详细评估。

为了支持这一流程,我们调研了多种向量数据库,最终选择了Milvus。主要原因有三点:

  • 易用性:Milvus提供了简洁的API接口,文档丰富,开发者可以快速上手并集成。同时,它支持标量过滤与向量相似性搜索的结合,实现更灵活的混合搜索。

  • 高性能:得益于优化的算法和索引结构,Milvus能够高效地处理大规模数据的向量检索任务,满足我们的性能需求。

  • 社区支持:Milvus拥有活跃的社区和丰富的生态系统,提供了多语言支持和工具链资源,帮助开发者快速解决问题。

在评估召回结果时,我们采用了两种主要方法:

  • 体感评估:对不同模型召回结果中各自独有的部分,使用大模型进行体感标注,统计标注结果看哪个模型体感表现更好。

  • 量化指标:通过统计召回率和精准率等关键指标,评估模型在实际召回任务中的表现。

03.

Milvus使用及具体评估过程

1. Milvus的部署:我们使用Milvus官方提供的docker-compose方式进行部署,使用的是2.4.5版本。评估过程中,采样了百万级别的CV数据,单节点部署完全可以满足这一规模需求。同时还部署了管控平台Attu,便于加载和删除数据集合,修改索引类型,以及进行向量搜索等操作。

2ab1b1cd4fa935f05bdf9c1bb437f8c0.png

为便于数据的导入和召回测试,我们还开发了相应的数据导入和召回接口,使评估流程更加自动化和便捷。

2. 数据准备:在Milvus和相关接口部署完成后,我们根据线上JD的流量分布情况,按照城市粒度采样了一些JD数据,并使用模型生成相应的JD向量。接着,我们对采样城市的全量CV进行向量生成,并通过写入接口将数据存储在Milvus中。为了确保评估的准确性,我们选择了FLAT类型索引,保证能够100%召回相关数据。

3. 召回过程:通过JD编号,我们从JD集合中查询出相应的JD向量,然后根据该向量从CV集合中召回最相似的topK CV。相似度计算采用内积作为度量标准,最终得到一组JD与CV的匹配对。

4. 召回结果评估:我们采用了两种方式对召回结果进行评估。首先,对不同模型各自召回集中独有的部分进行大模型的体感标注。其次,根据正向行为记录的JD-CV对构建正例集,并通过该正例集评估召回率和精准率等指标,最终对模型进行综合评估。

df43b951ecc67027a601a6d07ce911b3.png

使用Milvus过程中遇到的一些问题:

1. 索引类型选择问题:在分析召回结果时,我们发现一些模型预测分数较高的记录并未被成功召回,而一些分数较低的记录却被召回了。经过排查,问题出在索引类型上。我们最初使用的是IVF_FLAT索引,该类型能够提高查询速度,但无法保证100%的召回率。通过查询官网文档,我们将索引类型更改为FLAT,成功解决了这一问题。

2. 条件查询问题:我们在使用Python SDK进行条件查询时,发现传入的filter参数无法生效。经过与社区的沟通和排查,最终将filter参数改为expr参数后,问题得以解决。

04.

总结

Milvus作为一款功能强大且易于部署的向量数据库,极大地帮助我们优化了召回评估流程,显著节省了时间成本,并为模型上线前提供了更加充分的评估依据。在未来,我们计划继续探索更多的应用场景,进一步发掘Milvus的潜力,并通过其丰富的功能进一步提升业务的召回效率和准确性。

本文作者:

张晓 算法工程师

李伟鹏 资深算法工程师

推荐阅读

746de4177856730537b017982bb8ca7f.png

8d2b8e96112185a563d36d90cfb3fbd6.png

9a7c2c5f9ff67f5b882414cac48ce724.png

e7e9f7eb1ab67ccd23989c794b0983fe.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/901308.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入理解gPTP时间同步过程

泛化精确时间协议(gPTP)是一个用于实现精确时间同步的协议,特别适用于分布式系统中需要高度协调的操作,比如汽车电子、工业自动化等。 gPTP通过同步主节点(Time Master)和从节点(Time Slave)的时钟,实现全局一致的时间参考。 以下是gPTP实现主从时间同步的详细过程:…

奥迪一汽新能源:300台AGV、1000台机器人、24米立体库

导语 大家好,我是社长,老K。专注分享智能制造和智能仓储物流等内容。 位于长春的奥迪新能源工厂,占地面积广阔,达到了约150公顷,其规模之宏大,甚至超越了奥迪在欧洲的内卡苏姆工厂。 这座工厂不仅是奥迪在中…

一、在cubemx下RTC配置调试实例测试

一、rtc的时钟有lse提供。 二、选择rtc唤醒与闹钟功能 内部参数介绍 闹钟配置 在配置时间时,注意将时间信息存储起来,防止复位后时间重新配置。 if(HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR0)! 0x55AA)//判断标志位是否配置过,没有则进…

使用Angular构建动态Web应用

💖 博客主页:瑕疵的CSDN主页 💻 Gitee主页:瑕疵的gitee主页 🚀 文章专栏:《热点资讯》 使用Angular构建动态Web应用 1 引言 2 Angular简介 3 安装Angular CLI 4 创建Angular项目 5 设计应用结构 6 创建组件…

【每日一题】LeetCode - 盛最多水的容器

给定一个长度为 n 的整数数组 height。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i])。要求找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 输入示例: height [1,8,6,2,5,4,8,3,7]输出: 4…

CSS行块标签的显示方式

块级元素 标签:h1-h6,p,div,ul,ol,li,dd,dt 特点: (1)如果块级元素不设置默认宽度,那么该元素的宽度等于其父元素的宽度。 (2)所有的块级元素独占一行显示. (3&#xff…

安卓在windows连不上fastboot问题记录

fastboot在windows连不上fastboot 前提是android studio安装 google usb driver 搜索设备管理器 插拔几次找安卓设备 在其他设备 或者串行总线设备会出现安卓 右键更新驱动 下一步下一步然后可以了

【FISCO BCOS】二十二、使用Key Manager加密区块链节点

#1024程序员节|征文# 落盘加密是对节点存储在硬盘上的内容进行加密,加密的内容包括:合约的数据、节点的私钥。具体的落盘加密介绍,可参考:落盘加密的介绍,今天我们来部署并对节点进行落盘加密。 环境&a…

高效文本编辑与导航:Vim中的三种基本模式及粘滞位的深度解析

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

Bode图(波特图)

波特图: 通常用波特图分析信号的频率响应。 对设计滤波器的人来说,比较关注的是在特定的频率内,到底有怎样的增益和相移。根据前面分析的内容,波特图刚好是研究增益和相移。所以要想设计一个满足性能的滤波器,必须要…

react18中在列表中如何使用useCallback进行渲染优化

实现的需求:在列表中如何缓存每个子组件,父组件重新渲染,子组件不更新,下面的列子假设 Chart 组件被包裹在memo 中。你希望在 ReportList 组件重新渲染时跳过重新渲染列表中的每个 Chart。但是,你不能在循环中调用 use…

详细分析Pytorch中的masked_fill基本知识(附Demo)

目录 1. 基本知识2. Demo 1. 基本知识 基本的原理知识如下: 输入张量和掩码: masked_fill 接受两个主要参数:一个输入张量和一个布尔掩码 掩码的形状必须与输入张量相同,True 表示需要填充的位置,False 表示保持原值 …

TikTok运营对IP有什么要求?

TikTok在进行直播带货时,网络环境的配置尤为关键,网络质量直接影响到直播效果,因此选择稳定的IP地址很重要。那么,TikTok直播时该选择什么样的IP地址呢?接下来,我们来深入分析一下。 TikTok对IP地址的要求 …

HBuilder X 中Vue.js基础使用->计算属性的应用(三)

一、通过简单的计算属性&#xff1a;对两数进行加法&#xff0c;减法&#xff0c;乘法&#xff0c;除法运算 <template><div><h1>computed 计算属性</h1><el-input type"text" v-model"numOne" /> <el-input type"t…

容器化核心快速入门

概述 物理机&#xff1a;好比是独立的大船&#xff0c;独立发动机&#xff0c;独立船舱。所有资源共用。运水果的同时就不能运鱼&#xff08; 1964年&#xff09;虚拟机&#xff1a;相当于把大船进行改造&#xff0c;把大船的资源进行独立的拆分&#xff0c;独立的部分都有单独…

【Linux学习工具篇】之vim编辑器和gcc编译器

&#x1f4c3;博客主页&#xff1a; 小镇敲码人 &#x1f49a;代码仓库&#xff0c;欢迎访问 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&#x1f3fd;留言 &#x1f60d;收藏 &#x1f30f; 任尔江湖满血骨&#xff0c;我自踏雪寻梅香。 万千浮云遮碧…

Jmeter使用js对入参使用MD5加密

新增前置处理器JSR223 PreProcessor 注意: 加密的js文件需要放到jmtere的bin目录下,不需要使用给包围,如下图即可(这里不是真实的加密方法,需要自己引入加密算法) 脚本中不要使用let需要使用var 可以先尝试最简单的脚本在使用复杂的脚本 load方法用来加载js文件,不同的jmet…

qt 滚动条 美化

qt QScrollBar 滚动条分为竖直与水平滚动条&#xff0c;两者设置上类似&#xff0c;但也有一些不同&#xff0c;下面主要讲述美化及注意事项。 一、竖直滚动条 竖直滚动条分为7个部分&#xff1a; sub-line、 up-arrow 、sub-page、 hanle、 add-line、 dow-arrow、 add-pag…

SpringBoot最佳实践之 - 项目中统一记录正常和异常日志

1. 前言 此篇博客是本人在实际项目开发工作中的一些总结和感悟。是在特定需求背景下&#xff0c;针对项目中统一记录日志(包括正常和错误日志)需求的实现方式之一&#xff0c;并不是普适的记录日志的解决方案。所以阅读本篇博客的朋友&#xff0c;可以参考此篇博客中记录日志的…

使用JUC包的AtomicXxxFieldUpdater实现更新的原子性

写在前面 本文一起来看下使用JUC包的AtomicXxxxFieldUpdater实现更新的原子性。代码位置如下&#xff1a; 当前有针对int&#xff0c;long&#xff0c;ref三种类型的支持。如果你需要其他类型的支持的话&#xff0c;也可以照葫芦画瓢。 1&#xff1a;例子 1.1&#xff1a;普…