原文为黑马程序员的飞书云文档,链接在这:原文链接
在微服务的远程调用中,还存在几个问题需要解决:
首先是业务健壮性问题:
在之前的查询购物车列表的业务中,购物车服务需要查询最新的商品信息,与购物车数据做对比,提醒用户。大家设想一下,如果商品服务查询时发生故障,查询购物车列表在调用商品服务时,是不是也会异常?从而导致购物车查询失败。但从业务角度来说,为了提升用户体验,即便是商品查询失败,购物车列表也应该正确展示出来,哪怕是不包含最新的商品信息。
还有级联失败(雪崩)问题:
服务雪崩:微服务调用链路中某个服务的故障,导致整个链路中的所有微服务都不可用
还是查询购物车的业务,假如商品服务业务并发较高,占用过多Tomcat连接。可能会导致商品服务的所有接口响应时间增加,延迟变高,甚至是长时间阻塞直至查询失败。
此时查询购物车业务需要查询并等待商品查询结果,从而导致查询购物车列表业务的响应时间也变长,甚至也阻塞直至无法访问。而此时如果查询购物车的请求较多,可能导致购物车服务的Tomcat连接占用较多,所有接口的响应时间都会增加,整个服务性能很差, 甚至不可用。
依次类推,整个微服务群中与购物车服务、商品服务等有调用关系的服务可能都会出现问题,最终导致整个集群不可用。
还有跨服务的事务问题:
比如昨天讲到过的下单业务,下单的过程中需要调用多个微服务:
-
商品服务:扣减库存
-
订单服务:保存订单
-
购物车服务:清理购物车
这些业务全部都是数据库的写操作,我们必须确保所有操作的同时成功或失败。但是这些操作在不同微服务,也就是不同的Tomcat,这样的情况如何确保事务特性呢?
这些问题都会在今天找到答案。
今天的内容会分成几部分:
-
微服务保护
-
服务保护方案
-
请求限流
-
隔离和熔断
-
-
分布式事务
-
初识分布式事务
-
Seata
-
通过今天的学习,你将能掌握下面的能力:
-
知道雪崩问题产生原因及常见解决方案
-
能使用Sentinel实现服务保护
-
理解分布式事务产生的原因
-
能使用Seata解决分布式事务问题
-
理解AT模式基本原理
1.微服务保护
什么是微服务保护?
保证服务运行的健壮性,避免级联失败导致的雪崩问题,就属于微服务保护。
1.1.服务保护方案
微服务保护的方案有很多,比如:
-
请求限流
-
线程隔离
-
服务熔断
这些方案或多或少都会导致服务的体验上略有下降,比如请求限流,降低了并发上限;线程隔离,降低了可用资源数量;服务熔断,降低了服务的完整度,部分服务变的不可用或弱可用。因此这些方案都属于服务降级的方案。但通过这些方案,服务的健壮性得到了提升。
1.1.1.请求限流
服务故障最重要的原因,就是并发太高!解决了这个问题,就能避免大部分故障。当然,接口的并发不是一直很高,而是突发的。因此请求限流,就是限制(控制)访问接口的并发流量,避免服务因流量激增而出现故障。
请求限流往往会有一个限流器,数量高低起伏的并发请求曲线,经过限流器就变的非常平稳。这就像是水电站的大坝,起到蓄水的作用,可以通过开关控制水流出的大小,让下游水流始终维持在一个平稳的量。
1.1.2.线程隔离
当一个业务接口响应时间长,而且并发高时,就可能耗尽服务器的线程资源,导致服务内的其它接口受到影响。
线程隔离的思想来自轮船的舱壁模式:
轮船的船舱会被隔板分割为N个相互隔离的密闭舱,假如轮船触礁进水,只有损坏的部分密闭舱会进水,而其他舱由于相互隔离,并不会进水。这样就把进水控制在部分船体,避免了整个船舱进水而沉没。
为了避免某个接口故障或压力过大导致整个服务不可用,我们可以限定每个接口可以使用的资源范围,也就是将其“隔离”起来,使其不会导致服务器的线程资源被耗尽而导致服务内的其他接口受影响。
如下图所示,将查询购物车业务限定可用线程数量上限为20,这样即便查询购物车的请求因为查询商品服务而出现故障,也不会导致服务器的线程资源被耗尽,不会影响到其它接口。
1.1.3.服务熔断
线程隔离虽然避免了雪崩问题,但故障服务(商品服务)依然会拖慢购物车服务(服务调用方)的接口响应速度。而且商品查询的故障依然会导致查询购物车功能出现故障,购物车业务也变的不可用了。
服务熔断:由断路器统计请求的异常比例或慢调用比例,如果超出阈值就会熔断该接口,拦截该接口的请求。熔断期间,所有请求快速失败,全部走fallback逻辑。
所以,我们要做两件事情:
-
编写服务的降级逻辑:服务调用失败后的处理逻辑,根据业务场景,可以抛出异常,也可以返回友好提示或默认数据。
-
异常统计和熔断:统计服务提供方的异常比例,当比例过高表明该接口会影响到其它服务,应该拒绝调用该接口,而是直接走降级逻辑。
1.2.Sentinel-服务保护的技术
微服务保护的技术有很多,但在目前国内使用较多的还是Sentinel,所以接下来我们学习Sentinel的使用。
1.2.1.介绍和安装
Sentinel是阿里巴巴开源的一款服务保护框架,目前已经加入SpringCloudAlibaba中。官方网站:
https://sentinelguard.io/zh-cn/https://sentinelguard.io/zh-cn/Sentinel 的使用分为两个部分:
-
核心库(Jar包):不依赖任何框架/库,能够运行于 Java 8 及以上的版本的运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。在项目中引入依赖即可实现服务限流、隔离、熔断等功能。
-
控制台(Dashboard):Dashboard 主要负责管理推送规则、监控、管理机器信息等。
为了方便监控微服务,我们先把Sentinel的控制台搭建出来(此部分就是Sentinel的控制台部分)。
1)下载jar包
下载地址:
Releases · alibaba/Sentinel · GitHubA powerful flow control component enabling reliability, resilience and monitoring for microservices. (面向云原生微服务的高可用流控防护组件) - Releases · alibaba/Sentinelhttps://github.com/alibaba/Sentinel/releases也可以直接使用课前资料提供的版本:
2)运行
将jar包放在任意非中文、不包含特殊字符的目录下,重命名为sentinel-dashboard.jar
:
然后运行如下命令启动控制台:
java -Dserver.port=8090 -Dcsp.sentinel.dashboard.server=localhost:8090 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard.jar
3)访问
访问http://localhost:8090页面,就可以看到sentinel的控制台了:
需要输入账号和密码,默认都是:sentinel
登录后,即可看到控制台,默认会监控sentinel-dashboard服务本身:
1.2.2.微服务整合sentinel
我们在cart-service
模块中整合sentinel,连接sentinel-dashboard
控制台,步骤如下:
1)引入sentinel依赖
<!--sentinel-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>
2)配置控制台
修改application.yaml文件,添加下面内容:
- 配置sentinel的控制台地址,和sentinel控制台建立连接
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8090
3)访问cart-service
的任意端点
访问查询购物车接口,sentinel的客户端就会将服务的访问信息提交到sentinel-dashboard
控制台。并展示出统计信息:
点击簇点链路菜单,会看到下面的页面:
簇点链路:
我们看到/carts
这个接口路径就是其中一个簇点,我们可以对其进行限流、熔断、隔离等保护措施。
不过,需要注意的是,我们的SpringMVC接口是按照Restful风格设计,因此购物车的查询、删除、修改等接口全部都是/carts
路径:
默认情况下Sentinel会把路径作为簇点资源的名称,所以无法区分路径相同但请求方式不同的接口,查询、删除、修改等都被识别为一个簇点资源,这显然是不合适的。
所以需要进行如下配置,把请求方式 + 请求路径
作为簇点资源名:
1.在cart-service
的application.yml
中添加下面的配置:
spring:
cloud:
sentinel:
transport:
dashboard: localhost:8090
http-method-specify: true # 开启请求方式前缀
2.重启服务,通过页面访问购物车的相关接口,可以看到sentinel控制台的簇点链路发生了变化:
1.3.请求限流
在簇点链路后面点击流控按钮,即可对其做限流配置:
在弹出的菜单中这样填写:
这样就把查询购物车列表这个簇点资源的流量限制在了每秒6个,也就是最大QPS(每秒钟请求的数量)为6.
我们利用Jemeter做限流测试,我们每秒发出10个请求:
最终监控结果如下:
- 可以看出
GET:/carts
这个接口的通过QPS稳定在6附近,而拒绝的QPS在4附近,符合我们的预期。
1.4.线程隔离
比如,查询购物车的时候需要查询商品,为了避免因商品服务出现故障导致购物车服务级联失败,我们可以将购物车服务中查询商品的部分隔离起来,限制可用的线程资源:
这样,即便商品服务出现故障,最多导致查询购物车业务故障,并且可用的线程资源也被限定在一定范围,不会导致整个购物车服务崩溃。
所以,我们要对查询商品的FeignClient接口做线程隔离。
1.4.1.OpenFeign整合Sentinel
修改cart-service模块的application.yml文件,开启Feign的sentinel功能:
- 因为只有SpringMVC的接口才会成为簇点资源,而其他的不会,所以需要让Feign调用也能称为簇点资源,才能对它限流和线程隔离
- 作用:让OenFeign的请求也成为簇点资源
feign:
sentinel:
enabled: true # 开启feign对sentinel的支持
需要注意的是,默认情况下SpringBoot项目的tomcat最大线程数是200,允许的最大连接是8492,单机测试很难打满。
所以我们需要配置一下cart-service模块的application.yml文件,修改tomcat连接:
server:
port: 8082
tomcat:
threads:
max: 50 # 允许的最大线程数
accept-count: 50 # 最大排队等待数量
max-connections: 100 # 允许的最大连接
然后重启cart-service服务,可以看到查询商品的FeignClient自动变成了一个簇点资源:
1.4.2.配置线程隔离
接下来,点击查询商品的FeignClient对应的簇点资源后面的流控按钮:
在弹出的表单中填写下面内容:
注意,这里勾选的是并发线程数限制,也就是说这个查询功能最多使用5个线程,而不是5QPS。假设接口的响应时间时间是500ms,那每秒钟可以处理两个请求,则5个线程的实际QPS在10左右,而超出的请求自然会被拒绝。
我们利用Jemeter测试,每秒发送100个请求:
最终测试结果如下:
进入查询购物车的请求每秒大概在100,而在查询商品时却只剩下每秒10左右,符合我们的预期。
此时如果我们通过页面访问购物车的其它接口,例如添加购物车、修改购物车商品数量,发现不受影响:
响应时间非常短,这就证明线程隔离起到了作用,尽管查询购物车这个接口并发很高,但是它能使用的线程资源被限制了,因此不会影响到其它接口。
1.5.服务熔断
在上节课,我们利用线程隔离对查询购物车业务进行隔离,保护了购物车服务的其它接口。由于查询商品的功能耗时较高(我们模拟了500毫秒延时),再加上线程隔离限定了线程数为5,导致接口吞吐能力有限,最终QPS只有10左右。这就导致了几个问题:
第一,超出的QPS上限的请求就只能抛出异常,从而导致购物车的查询失败。但从业务角度来说,即便没有查询到最新的商品信息,购物车也应该展示给用户,用户体验更好。也就是给查询失败设置一个降级处理逻辑。
第二,由于查询商品的延迟较高(模拟的500ms),从而导致查询购物车的响应时间也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。对于商品服务这种不太健康的接口,我们应该直接停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。
1.5.1.编写降级逻辑
触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好,其实就是生成对应Feign客户端接口的后备对象,出现异常时或被限流时执行它
给FeignClient编写失败后的降级逻辑有两种方式:
-
方式一:FallbackClass,无法对远程调用的异常做处理
-
方式二:FallbackFactory,可以对远程调用的异常做处理,我们一般选择这种方式。
这里我们演示方式二的失败降级处理。
步骤一:在hm-api模块中给ItemClient
定义降级处理类,实现FallbackFactory
:
代码如下:
package com.hmall.api.client.fallback;
import com.hmall.api.client.ItemClient;
import com.hmall.api.dto.ItemDTO;
import com.hmall.api.dto.OrderDetailDTO;
import com.hmall.common.exception.BizIllegalException;
import com.hmall.common.utils.CollUtils;
import lombok.extern.slf4j.Slf4j;
import org.springframework.cloud.openfeign.FallbackFactory;
import java.util.Collection;
import java.util.List;
//泛型指定为要设置的Feign客户端
@Slf4j
public class ItemClientFallback implements FallbackFactory<ItemClient> {
@Override
public ItemClient create(Throwable cause) {
return new ItemClient() {
@Override
public List<ItemDTO> queryItemByIds(Collection<Long> ids) {
log.error("远程调用ItemClient#queryItemByIds方法出现异常,参数:{}", ids, cause);
// 查询购物车允许失败,查询失败,返回空集合
return CollUtils.emptyList();
}
@Override
public void deductStock(List<OrderDetailDTO> items) {
// 库存扣减业务需要触发事务回滚,查询失败,抛出异常
throw new BizIllegalException(cause);
}
};
}
}
步骤二:在hm-api
模块中的com.hmall.api.config.DefaultFeignConfig
类中将ItemClientFallback
注册为一个Bean
:
步骤三:在hm-api
模块中的ItemClient
接口中使用ItemClientFallbackFactory
:
重启后,再次测试,发现被限流的请求不再报错,走了降级逻辑:
但是未被限流的请求延时依然很高:
导致最终的平局响应时间较长。
1.5.2.服务熔断
查询商品的RT较高(模拟的500ms),从而导致查询购物车的RT也变的很长。这样不仅拖慢了购物车服务,消耗了购物车服务的更多资源,而且用户体验也很差。
对于商品服务这种不太健康的接口,我们应该停止调用,直接走降级逻辑,避免影响到当前服务。也就是将商品查询接口熔断。当商品服务接口恢复正常后,再允许调用。这其实就是断路器的工作模式了。
Sentinel中的断路器不仅可以统计某个接口的慢请求比例,还可以统计异常请求比例。当这些比例超出阈值时,就会熔断该接口,即拦截访问该接口的一切请求,降级处理;当该接口恢复正常时,再放行对于该接口的请求。
断路器的工作状态切换有一个状态机来控制:
状态机包括三个状态:
-
closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
-
open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态持续一段时间后会进入half-open状态
-
half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
-
请求成功:则切换到closed状态
-
请求失败:则切换到open状态
-
我们可以在控制台通过点击簇点后的熔断
按钮来配置熔断策略:
在弹出的表格中这样填写:
这种是按照慢调用比例来做熔断,上述配置的含义是:
-
RT超过200毫秒的请求调用就是慢调用
-
统计最近1000ms内的最少5次请求,如果慢调用比例不低于0.5,则触发熔断
-
熔断持续时长20s(open状态的开启时长)
配置完成后,再次利用Jemeter测试,可以发现:
在一开始一段时间是允许访问的,后来触发熔断后,查询商品服务的接口通过QPS直接为0,所有请求都被熔断了。而查询购物车的本身并没有受到影响。
此时整个购物车查询服务的平均RT影响不大:
2.分布式事务
首先我们看看项目中的下单业务整体流程:
分布式事务:在分布式系统中,一个业务需要多个服务合作完成,在每个服务中都有事务,而这些事务必须同时成功或失败(其中,每个服务的事务可以称为分支事务,整个业务的分支事合起来称为全局事务)
我们知道每一个分支事务就是传统的单体事务,都可以满足ACID特性,但全局事务跨越多个服务、多个数据库,是否还能满足呢?
我们来做一个测试,先进入购物车页面:
目前购物车中有4个商品,然后结算下单,进入订单结算页面:
然后将购物车中某个商品的库存修改为0
:
然后,提交订单,最终因库存不足导致下单失败:
然后我们去查看购物车列表,发现购物车数据依然被清空了,并未回滚:
事务并未遵循ACID的原则,归其原因就是参与事务的多个子业务在不同的微服务,跨越了不同的数据库。虽然每个单独的业务都能在本地遵循ACID,但是它们互相之间没有感知,不知道有人失败了,无法保证最终结果的统一,也就无法遵循ACID的事务特性了。
这就是分布式事务问题,出现以下情况之一就可能产生分布式事务问题:
-
业务跨多个服务实现
-
业务跨多个数据源实现
接下来这一章我们就一起来研究下如何解决分布式事务问题。
2.1.认识Seata
Seata是 2019 年 1 月份蚂蚁金服和阿里巴巴共同开源的分布式事务解决方案。致力于提供高性能和简单易用的分布式事务服务,为用户打造一站式的分布式解决方案。
在众多的开源分布式事务框架中,功能最完善、使用最多的就是阿里巴巴在2019年开源的Seata了。
Seata 是什么? | Apache SeataSeata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。https://seata.io/zh-cn/docs/overview/what-is-seata.html产生分布式事务的原因:参与事务的多个分支事务互相无感知,不知道彼此的执行状态。
因此解决分布式事务的思想非常简单:找一个统一的事务协调者,与多个分支事务通信,检测每个分支事务的执行状态,保证全局事务下的每一个分支事务同时成功或失败即可。大多数的分布式事务框架都是基于这个理论来实现的。
Seata也不例外,在Seata的事务管理中有三个重要的角色:
-
TC (Transaction Coordinator) - 事务协调者:维护全局和分支事务的状态,协调全局事务提交或回滚。
-
TM (Transaction Manager) - 事务管理器:定义全局事务的范围、开始全局事务、提交或回滚全局事务。
-
RM (Resource Manager) - 资源管理器:管理分支事务,与TC交谈,注册分支事务和报告分支事务的状态,并驱动分支事务提交或回滚。
Seata的工作架构如图所示:
其中,TM和RM可以理解为Seata的客户端部分,引入到参与事务的微服务依赖中即可。将来TM和RM就会协助微服务,实现本地分支事务与TC之间交互,实现事务的提交或回滚。
而TC服务则是事务协调中心,是一个独立的微服务,需要单独部署。
2.2.部署TC服务
2.2.1.准备数据库表
Seata支持多种存储模式,但考虑到持久化的需要,我们一般选择基于数据库存储。执行课前资料提供的《seata-tc.sql》
,导入数据库表:
其中,branch_table 是分支表,global_table 是全局表,分支事务跟全局事务的信息存放在这两张表中;剩下两张lock表就是锁,tc服务会基于数据库表实现一个锁功能来确保分布式事务执行的过程中的线程安全
2.2.2.准备配置文件
课前资料准备了一个seata目录,其中包含了seata运行时所需要的配置文件:
其中包含中文注释,大家可以自行阅读。
我们将整个seata文件夹拷贝到虚拟机的/root
目录:
2.2.3.Docker部署
需要注意,要确保nacos、mysql都在hm-net网络中。如果某个容器不再hm-net网络,可以参考下面的命令将某容器加入指定网络:
docker network connect [网络名] [容器名]
在虚拟机的/root
目录执行下面的命令:
docker run --name seata \
-p 8099:8099 \
-p 7099:7099 \
-e SEATA_IP=192.168.150.101 \
-v ./seata:/seata-server/resources \
--privileged=true \
--network hm-net \
-d \
seataio/seata-server:1.5.2
如果镜像下载困难,也可以把课前资料提供的镜像上传到虚拟机并加载:
2.3.微服务集成Seata
参与分布式事务的每一个微服务都需要集成Seata,我们以trade-service
为例。
2.3.1.引入依赖
为了方便各个微服务集成seata,我们需要把seata配置共享到nacos,因此trade-service
模块不仅仅要引入seata依赖,还要引入nacos依赖:
<!--统一配置管理-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>
<!--读取bootstrap文件-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-bootstrap</artifactId>
</dependency>
<!--seata-->
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-seata</artifactId>
</dependency>
2.3.2.改造配置
首先在nacos上添加一个共享的seata配置,命名为shared-seata.yaml,
用于让微服务找到TC服务的地址:
内容如下:
seata:
registry: # TC服务注册中心的配置,微服务根据这些信息去注册中心获取tc服务地址
type: nacos # 注册中心的类型,这是为nacos
nacos:
server-addr: 192.168.150.101:8848 # nacos的地址
namespace: "" # namespace,默认为空,用于数据隔离,简单认为是微服务的前缀
group: DEFAULT_GROUP # 服务的分组,默认是DEFAULT_GROUP
application: seata-server # seata服务的名称
username: nacos
password: nacos
tx-service-group: hmall # 事务组名称
service:
vgroup-mapping: # 事务组与tc集群的映射关系
hmall: "default"
然后,改造trade-service
模块,添加bootstrap.yaml
:
内容如下:
spring:
application:
name: trade-service # 服务名称
profiles:
active: dev
cloud:
nacos:
server-addr: 192.168.150.101 # nacos地址
config:
file-extension: yaml # 文件后缀名
shared-configs: # 共享配置
- dataId: shared-jdbc.yaml # 共享mybatis配置
- dataId: shared-log.yaml # 共享日志配置
- dataId: shared-swagger.yaml # 共享日志配置
- dataId: shared-seata.yaml # 共享seata配置
可以看到这里加载了共享的seata配置。
然后改造application.yaml文件,内容如下:
server:
port: 8085
feign:
okhttp:
enabled: true # 开启OKHttp连接池支持
sentinel:
enabled: true # 开启Feign对Sentinel的整合
hm:
swagger:
title: 交易服务接口文档
package: com.hmall.trade.controller
db:
database: hm-trade
参考上述办法分别改造hm-cart
和hm-item
两个微服务模块。
2.3.3.添加数据库表
seata的客户端在解决分布式事务的时候需要记录一些中间数据,保存在数据库中。因此我们要先准备一个这样的表。
将课前资料的seata-at.sql分别文件导入hm-trade、hm-cart、hm-item三个数据库中:
结果:
OK,至此为止,微服务整合的工作就完成了。可以参考上述方式对hm-item
和hm-cart
模块完成整合改造。
2.3.4.测试
接下来就是测试的分布式事务了。
我们找到trade-service
模块下的com.hmall.trade.service.impl.OrderServiceImpl
类中的createOrder
方法,也就是下单业务方法。
将其上的@Transactional
注解改为Seata提供的@GlobalTransactional
:
@GlobalTransactional
注解就是在标记事务的起点,将来TM就会基于这个方法判断全局事务范围,初始化全局事务。
我们重启trade-service
、item-service
、cart-service
三个服务。再次测试,发现分布式事务的问题解决了!
那么,Seata是如何解决分布式事务的呢?
2.4.XA模式
Seata支持四种,分布式事务解决方案:
-
XA
-
TCC
-
AT
-
SAGA
这里以XA
模式和AT
模式来讲解其实现原理。
XA
规范 是 X/Open
组织定义的分布式事务处理(DTP,Distributed Transaction Processing)标准,XA 规范 描述了全局的TM
与局部的RM
之间的接口,几乎所有主流的数据库都对 XA 规范 提供了支持。
2.4.1.两阶段提交
A是规范,目前主流数据库都实现了这种规范,实现的原理都是基于两阶段提交。
一阶段:
-
TC事务协调者,通知每个事务参与者执行本地事务
-
本地事务执行完成后,报告事务的执行状态给事务协调者TC,此时事务不提交,继续持有数据库锁
二阶段:
-
TC事务协调者基于一阶段的报告来判断下一步操作
-
如果一阶段都成功,则通知所有事务参与者,提交事务
-
如果一阶段任意一个事务参与者失败,则通知所有事务参与者回滚事务
正常情况:
异常情况:
2.4.2.Seata的XA模型
Seata对原始的XA模式做了简单的封装和改造,以适应自己的事务模型,基本架构如图:
RM
一阶段的工作:
-
注册分支事务到
TC
-
执行分支业务sql但不提交
-
报告执行状态到
TC
TC
二阶段的工作:
-
TC
检测各分支事务执行状态-
如果都成功,通知所有RM提交事务
-
如果有失败,通知所有RM回滚事务
-
RM
二阶段的工作:
-
接收
TC
指令,提交或回滚事务
2.4.3.优缺点
XA
模式的优点是什么?
-
事务的强一致性,满足ACID原则
-
常用数据库都支持,实现简单,并且没有代码侵入
XA
模式的缺点是什么?
-
因为一阶段需要锁定数据库资源,等待二阶段结束才释放,性能较差
-
依赖关系型数据库实现事务
2.4.4.XA的实现步骤
首先,在配置文件中指定采用的分布式事务模式。我们可以在Nacos中的共享shared-seata.yaml配置文件中设置:
seata:
data-source-proxy-mode: XA
其次,利用@GlobalTransactional注解
标记分布式事务的入口方法:
2.5.AT模式
AT
模式同样是分阶段提交的事务模型,不过缺弥补了XA
模型中资源锁定周期过长的缺陷。
2.5.1.Seata的AT模型
基本流程图:
阶段一RM
的工作:
-
RM注册分支事务到TC,告诉TC它是全局事务下的哪个分支
-
执行业务sql之前生成一个快照undo-log(数据修改之前的快照)
-
执行分支业务的sql语句并立刻提交事务
-
分支事务提交完后,报告事务的状态给TC
阶段二提交时RM
的工作:
- 所有的分支事务执行完后,TM向TC告知执行完
-
TC去检查分支事务的状态
a.如果都成功,则立即删除快照
b.如果有分支事务失败,则根据undo-log恢复数据到更新前回滚。读取快照数据,将快照恢复到数据库。
和XA模式最大的区别就是在一不用等待分支事务的提交,而是各自立即提交,不锁定资源
2.5.2.流程梳理
我们用一个真实的业务来梳理下AT模式的原理。
比如,现在有一个数据库表,记录用户余额:
id | money |
---|---|
1 | 100 |
其中一个分支业务要执行的SQL为:
update tb_account set money = money - 10 where id = 1
AT模式下,当前分支事务执行流程如下:
一阶段:
-
TM
发起并注册全局事务到TC
-
TM
调用分支事务 -
分支事务准备执行业务SQL
-
RM
拦截业务SQL,根据where条件查询原始数据,形成快照。
{
"id": 1, "money": 100
}
-
RM
执行业务SQL,提交本地事务,释放数据库锁。此时 money = 90 -
RM
报告本地事务状态给TC
二阶段:
-
TM
通知TC
事务结束 -
TC
检查分支事务状态-
如果都成功,则立即删除快照
-
如果有分支事务失败,需要回滚。读取快照数据({"id": 1, "money": 100}),将快照恢复到数据库。此时数据库再次恢复为100
-
流程图:
2.5.3.AT与XA的区别
简述AT
模式与XA
模式最大的区别是什么?
-
XA
模式一阶段不提交事务,锁定资源;AT
模式一阶段直接提交,不锁定资源。 -
XA
模式依赖数据库机制实现回滚;AT
模式利用数据快照实现数据回滚。 -
XA
模式强一致;AT
模式最终一致
可见,AT模式使用起来更加简单,无业务侵入,性能更好。因此企业90%的分布式事务都可以用AT模式来解决。