深度学习——线性神经网络(五、图像分类数据集——Fashion-MNIST数据集)

目录

  • 5.1 读取数据集
  • 5.2 读取小批量
  • 5.3 整合所有组件

  MNIST数据集是图像分类中广泛使用的数据集之一,但是作为基准数据集过于简单,在本小节将使用类似但更复杂的Fashion-MNIST数据集。

import torch
import torchvision
from torch.utils import data
from torchvision import transforms
from d2l import torch as d2l

# 这个函数的目的是设置图形显示格式为SVG(Scalable Vector Graphics),
# 这是一种基于矢量的图形格式,可以清晰地缩放而不失真。
d2l.use_svg_display()

5.1 读取数据集

  可以通过框架中的内置函数将Fashion-MNIST数据集下载并读取到内存中。

# 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,
# 并除以255使得所有像素的数值均在0~1之间
trans = transforms.ToTensor()
mnist_train = torchvision.datasets.FashionMNIST(
    root="../data", train=True, transform=trans, download=True)
mnist_test = torchvision.datasets.FashionMNIST(
    root="../data", train=False, transform=trans,download=True)

在这里插入图片描述
  Fashion-MNIST由10个类别的图像组成,每个类别由训练数据集中的6000张图像和测试数据集中的1000张图像组成。因此,训练集和测试集分别总共包含60000和10000张图像。测试数据集不会用于训练,只用于评估模型性能。

print(len(mnist_train))
print(len(mnist_test))
60000
10000

  每个输入图像的高度和宽度均为28像素,数据集由灰度图像组成,其通道数为1.

  在图像处理和计算机视觉中,“通道”一词常用来描述图像中颜色信息的存储方式。每个通道代表图像中一种颜色的成分,不同的颜色模式会有不用的通道数。
  灰度图像的通道数为1,在灰度图像中,每个像素只有一个强度值,表示黑白之间的不同灰度级别,不包含颜色信息。

print(mnist_train[0][0].shape)
torch.Size([1, 28, 28])

  Fashion-MNIST中包含的10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。
  以下函数用于在数字标签索引及其文本名称之间进行转换。

def get_fashion_mnist_labels(labels):
    """返回Fashion-MNIST数据集的文本标签"""
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

  现在创建一个可视化函数来查看样本。

def show_images(imgs, num_rows, num_cols, titles=None, scale=1.5):
    """
    创建一个函数来可视化这些样本,绘制图像列表,目的是在一张图中显示多个图像。imgs是要显示的图像列表,
    num_rows是创建的子图的行数,num_cols是创建的子图的列数,该子图没有设置标题,调整子图大小的缩放因子默认为1.5
    """
    figsize = (num_cols * scale, num_rows * scale) # 计算整个子图的尺寸,基于子图的行数和列数以及缩放因子来决定
    _, axes = d2l.plt.subplots(num_rows, num_cols, figsize=figsize) # figsize 参数设置了整个图形的大小
    axes = axes.flatten() # 将子图网格展平为一维数组,方便后续遍历
    for i, (ax, img) in enumerate(zip(axes, imgs)):
        """
        使用enumerate函数和zip函数来迭代两个列表:axes和imgs。这个循环将同时遍历这两个列表,并将它们对应的元素组合在一起,然后进行处理。
        其中enumerate函数用于跟踪循环的当前迭代次数(即索引i),并返回每个元素及其索引。
        """
        if torch.is_tensor(img):
            # 图片张量
            ax.imshow(img.numpy())
        else:
            # PIL图片
            ax.imshow(img)

        # 子图中隐藏坐标轴。具体来说,它们分别隐藏了x轴和y轴
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)
        if titles:
            ax.set_title(titles[i]) # 用来给每个子图设置标题


    plt.show()
    plt.savefig('class')
    return axes

X, y = next(iter(data.DataLoader(mnist_train, batch_size=18))) # 用于拿到第一个小批量,批量大小为18
show_images(X.reshape(18, 28, 28), 2, 9, titles=get_fashion_mnist_labels(y))

在这里插入图片描述

5.2 读取小批量

  为了使我们在读取训练集和测试集时更容易,使用内置的数据迭代器,而不是从开始创建。在每次迭代中,数据加载器都会读取一小批量数据,大小为batch_size,通过内置的数据迭代器,我们可以随机打乱所有样本,从而无偏见地读取小批量。

batch_size = 256 # 设置批量大小


def get_dataloader_workers():
    """使用4个进程来读取数据"""
    return 4


train_iter = data.DataLoader(mnist_train, batch_size, shuffle=True,
                             num_workers=get_dataloader_workers())

# 看一下读取训练数据所需的时间
timer = d2l.Timer()
for X, y in train_iter:
    continue
print(f'{timer.stop():.2f} sec')
2.36 sec

  下面设置了不同的进程数所需的时间。设置的8个进程数读取小批量所需的时间比较少。
在这里插入图片描述

5.3 整合所有组件

  现在我们定义load_data_fashion_mnist函数,用于获取和读取Fashion-MNIST数据集。 这个函数返回训练集和验证集的数据迭代器。 此外,这个函数还接受一个可选参数resize,用来将图像大小调整为另一种形状。

def load_data_fashion_mnist(batch_size, resize=None):  #@save
    """下载Fashion-MNIST数据集,然后将其加载到内存中"""
    trans = [transforms.ToTensor()]
    if resize:
        trans.insert(0, transforms.Resize(resize))
    trans = transforms.Compose(trans)
    mnist_train = torchvision.datasets.FashionMNIST(
        root="../data", train=True, transform=trans, download=True)
    mnist_test = torchvision.datasets.FashionMNIST(
        root="../data", train=False, transform=trans, download=True)
    return (data.DataLoader(mnist_train, batch_size, shuffle=True,
                            num_workers=get_dataloader_workers()),
            data.DataLoader(mnist_test, batch_size, shuffle=False,
                            num_workers=get_dataloader_workers()))

  我们通过指定resize参数来测试load_data_fashion_mnist函数的图像大小调整功能。

train_iter, test_iter = load_data_fashion_mnist(32, resize=64)
for X, y in train_iter:
    print(X.shape, X.dtype, y.shape, y.dtype)
    break
torch.Size([32, 1, 64, 64]) torch.float32 torch.Size([32]) torch.int64

   小结:
  数据迭代器是获得更高性能的关键组件。依靠实现良好的数据迭代器,利用高性能计算来避免减慢训练过程的可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/901025.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

你了解的spring框架有哪些

列举一些重要的Spring模块? Spring Core: 基础,可以说 Spring 其他所有的功能都需要依赖于该类库。主要提供 IOC 依赖注入功能。**Spring Aspects ** : 该模块为与AspectJ的集成提供支持。Spring AOP :提供了面向方面的编程实现。…

logback 如何将日志输出到文件

如何作 将日志输出到文件需要使用 RollingFileAppender&#xff0c;该 Appender 必须定义 rollingPolicy &#xff0c;另外 rollingPollicy 下必须定义 fileNamePattern 和 encoder <appender name"fileAppender" class"ch.qos.logback.core.rolling.Rollin…

重构案例:将纯HTML/JS项目迁移到Webpack

我们已经了解了许多关于 Webpack 的知识&#xff0c;但要完全熟练掌握它并非易事。一个很好的学习方法是通过实际项目练习。当我们对 Webpack 的配置有了足够的理解后&#xff0c;就可以尝试重构一些项目。本次我选择了一个纯HTML/JS的PC项目进行重构&#xff0c;项目位于 GitH…

Elliott Wave Prophet,艾略特波浪预测指标!预测未来走势!免费公式!(指标教程)

指标名称&#xff1a;艾略特波浪预测 Elliott Wave Prophet 版本&#xff1a;MT4 ver. 2.0 Elliott Wave Prophet &#xff0c;艾略特波浪预测指标是一款创新的外汇指标&#xff0c;旨在帮助进行波浪分析&#xff0c;并基于已形成的波浪来一定程度上预测未来的价格走势。Elli…

【设计模式-状态模式】

状态模式&#xff08;State Pattern&#xff09;是一种行为设计模式&#xff0c;它允许一个对象在内部状态改变时改变它的行为。换句话说&#xff0c;这种模式让对象在不同的状态下能够表现出不同的行为&#xff0c;而不需要修改对象的代码。状态模式通过将对象的行为与状态进行…

江协科技STM32学习- P21 ADC模数转换器

&#x1f680;write in front&#x1f680; &#x1f50e;大家好&#xff0c;我是黄桃罐头&#xff0c;希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​…

FFMPEG+Qt 实时显示本机USB摄像头1080p画面以及同步录制mp4视频

FFMPEGQt 实时显示本机USB摄像头1080p画面以及同步录制mp4视频 文章目录 FFMPEGQt 实时显示本机USB摄像头1080p画面以及同步录制mp4视频1、前言1.1 目标1.2 一些说明 2、效果3、代码3.1 思路3.2 工程目录3.3 核心代码 4、全部代码获取 1、前言 本文通过FFMPEG(7.0.2)与Qt(5.13.…

多线程初阶(七):单例模式指令重排序

目录 1. 单例模式 1.1 饿汉模式 1.2 懒汉模式 2. 懒汉模式下的问题 2.1 线程安全问题 2.2 如何解决 --- 加锁 2.3 加锁引入的新问题 --- 性能问题 2.4 指令重排序问题 2.4.1 指令重排序 2.4.2 指令重排序引发的问题 1. 单例模式 单例模式, 是设计模式中最典型的一种模…

【ArcGIS微课1000例】0125:ArcGIS矢量化无法自动完成面解决方案

文章目录 一、坐标系统问题二、正确使用自动完成面工具一、坐标系统问题 1. 数据库坐标系 arcgis矢量化的过程中,无法自动完成面,可能是因为图层要素没有坐标系造成的。双击数据库打开数据库属性,可以查看当前数据框的坐标系。 2. 图层坐标系 双击图层,打开图层属性,切…

Safari 中 filter: blur() 高斯模糊引发的性能问题及解决方案

目录 引言问题背景&#xff1a;filter: blur() 引发的问题产生问题的原因分析解决方案&#xff1a;开启硬件加速实际应用示例性能优化建议常见的调试工具与分析方法 引言 在前端开发中&#xff0c;CSS滤镜&#xff08;如filter: blur()&#xff09;的广泛使用为页面带来了各种…

使用query-string库出现错误Module parse failed: Unexpected token

环境 node v12query-string 9.1.0 报错信息 Failed to compile../node_modules/query-string/base.js 350:14 Module parse failed: Unexpected token (350:14) File was processed with these loaders:* ./node_modules/babel-loader/lib/index.js You may need an additio…

正则表达式和通配符

文章目录 正则表达式和通配符的区别正则表达式&#xff08;Regex&#xff09;通配符&#xff08;Wildcards&#xff09;总结 正则表达式的概念正则表达式的由来为什么要使用正则表达式 正则表达式的语法组成修饰符元字符\f\b\B 在Linux中的基础正则和扩展正则基础正则(BRE)^$.*…

【南方科技大学】CS315 Computer Security 【Lab6 IoT Security and Wireless Exploitation】

目录 Introduction (Part 1: OS Security for IoT )Software RequirementsStarting the Lab 6 Virtual MachineSetting up the Zephyr Development EnvironmentDownload the Zephyr Source CodeInstalling Requirements and DependenciesSetting the Project’s Environment Va…

《a16z : 2024 年加密货币现状报告》解析

加密社 原文链接&#xff1a;State of Crypto 2024 - a16z crypto译者&#xff1a;AI翻译官&#xff0c;校对&#xff1a;翻译小组 当我们两年前第一次发布年度加密状态报告的时候&#xff0c;情况跟现在很不一样。那时候&#xff0c;加密货币还没成为政策制定者关心的大事。 比…

Ubuntu 安装 npm

1. 升级apt sudo apt-get update 2. 安装nodejs sudo apt install nodejs 3. 安装npm sudo apt-get install npm 4. 查看版本 node -v npm -v 完成安装&#xff01;

记一次AWS服务器扩容

1、首先通过下列命令列出设备详情&#xff0c;可以看到红色框起来的部分有160G&#xff0c;需要把新增的20G扩容到根目录(139.9)上 lsblk查看文件系统 df -h2.执行sudo growpart /dev/xvda 1即可把20G的空间扩容到根目录上 扩容成功 但是可以看到并未生效 3.列出文件系统格…

ue5实现数字滚动增长

方法1 https://www.bilibili.com/video/BV1h14y197D1/?spm_id_from333.999.0.0 b站教程 重写loop节点 方法二 写在eventtick里

NVR小程序接入平台/设备EasyNVR多品牌NVR管理工具/设备的多维拓展与灵活应用

在数字化安防时代&#xff0c;NVR批量管理软件/平台EasyNVR作为一种先进的视频监控系统设备&#xff0c;正逐步成为各个领域监控解决方案的首选。NVR批量管理软件/平台EasyNVR作为一款基于端-边-云一体化架构的国标视频融合云平台&#xff0c;凭借其部署简单轻量、功能多样、兼…

什么是DICOM文件?——认识DICOM:医学影像与信息管理的标准化利器

目录 引言 什么是DICOM&#xff1f; DICOM的组成 DICOM的功能 DICOM的应用 DICOM的种类 DICOM的生成过程 DICOM的发展 总结 引言 在现代医学中&#xff0c;影像处理和管理是不可或缺的一环。从MRI、CT、X射线到超声波&#xff0c;医学影像为诊断和治疗提供了丰富的信息…

iOS 本地存储地址(位置)

前言: UserDefaults 存在沙盒的 Library --> Preferences--> .plist文件 CoreData 存在沙盒的 Library --> Application Support--> xx.sqlite 一个小型数据库里 (注:Application Support 这个文件夹已开始是没有的,只有当你写了存储代码,运行之后,目录里才会出…