【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析

【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析

在这里插入图片描述

1 题目

一、问题背景

近年来,随着智能手机的产生,发展到爆炸式的普及增长,不仅推动了中 国智能手机市场的发展和扩大,还快速的促进手机软件的开发。近年中国智能手 机市场品牌竞争进一步加剧,中国超越美国成为全球第一大智能手机市场。手机 软件日新月异,让人们更舒适的使用手机,为人们的生活带来很多乐趣,也产生 了新的群体“低头一族”。手机软件进入人们的生活,游戏、购物、社交、资讯、理财等等APP吸引着、方便着现代社会的人们,让手机成为人们出门的必备物 品。

该数据来自某公司某年连续30天的4万多智能手机用户的监测数据,已经做 了脱敏和数据变换处理。每天的数据为1个txt文件,共10列,记录了每个用户(以uid为唯一标识)每天使用各款APP(以appid为唯一标识)的起始时间,使 用时长,上下流量等。具体说明见表1。此外,有一个辅助表格app_class.csv,共两列。第一列是appid,给出4000多个常用APP所属类别(app_class),比如:社交类、影视类、教育类等,用英文字母a-t表示,共20个常用得所属类别,其余APP不常用,所属类别未知。

表 1

变量编号变量名释义
1uid用户的id
2appidAPP的id(与app_class文件中的第一列对应)
3app_typeAPP类型:系统自带、用户安装
4start_day使用起始天,取值1-30(注:第一天数据的头两行的使用起始天取 值为0,说明是在这一天的前一天开始使用的)
5start_time使用起始时间
6end_day使用结束天
7end_time使用结束时间
8duration使用时长(秒)
9up_flow上行流量
10down_flow下行流量

二、解决问题

  1. APP使用情况预测分析:要研究的问题是通过用户的APP使用记录预测用户未来是否使用APP所属类型(app_class),以及对应的具体类型(appid)( 多重分类问题)

(一)对用户使用APP的情况进行预测,根据用户第1~15天的常用所属20 类APP的使用情况,建立一个模型来预测用户在16~30天会使用哪些类的APP, 给出预测结果和真实结果相比的准确率。(注:测试集不能参与到训练和验证中,否则作违规处理)

(二)对用户使用APP的使用时长进行预测,根据用户第115天的常用所属20类APP的使用情况,建立一个模型来预测用户在1630天对于每一类APP的有效日均使用时长。评价指标选用NMSE. (注:测试集不能参与到训练和验证中,否则作违规处理)

  1. 由于APP数量众多,总量多达几万,绝大多数市场占用率极低,因此仅使用app_class.csv文件中给出的4000多个常用的并且用户数超过10个APP进行推荐。通过每个用户30天的手机app使用情况,建立一个推荐系统模型,对每一个用户推荐app,并且给出推荐系统模型的详细描述,推荐系统使用的模型参数量,以及对推荐系统的预测结果进行评价。

2 思路分析

2.1 问题一

在初赛的基础上,重新训练模型,重新预测一遍就行。

2.2 问题二

这是一个推荐系统开发的问题。

  1. 数据预处理:对数据进行清洗和预处理,包括去除重复值、缺失值填充、异常值处理、特征工程等。
  2. 特征提取:从数据中提取有用的特征,包括用户的历史使用记录、app所属类别、app类型等。
  3. 模型选择:基于内容的推荐、协同过滤推荐、深度学习推荐等推荐模型。
  4. 模型训练:将预处理后的数据输入到所选的机器学习模型中进行训练,得到模型参数。
  5. 模型评估:对训练好的模型进行评估,如准确率、召回率、F1值等。
  6. 模型优化:根据评估结果进行模型参数的调整和优化,模型改进、模型融合等方法。

我们可以考虑使用协同过滤推荐模型,模型参数包括用户偏好矩阵和物品偏好矩阵,参数量取决于用户和物品的数量。对于推荐系统的预测结果进行评价,可以使用交叉验证或者留出法等方法进行评估。

3 Python实现

3.1 数据预处理

import pandas as pd
import os
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
tqdm.pandas()
# 合并数据1-30天的数据
folder_path = '初赛数据集/'
dfs = []
for filename in os.listdir(folder_path):
    if filename.endswith('.txt'):
        csv_path = os.path.join(folder_path, filename)
        tempdf = pd.read_csv(csv_path)
        dfs.append(tempdf)

folder_path = '复赛数据集/'
for filename in os.listdir(folder_path):
    if filename.endswith('.txt'):
        csv_path = os.path.join(folder_path, filename)
        tempdf = pd.read_csv(csv_path)
        dfs.append(tempdf)
df = pd.concat(dfs,axis=0)
df.shape
import pandas as pd
import matplotlib.pyplot as plt

# 数据清洗
df.loc[df['start_day'] == 0, 'start_day'] = 1  # 将使用起始天为0的行,修改为1
df['start_time'] = pd.to_datetime(df['start_time'])  # 转换为datetime类型
df['end_time'] = pd.to_datetime(df['end_time'])  # 转换为datetime类型
df['usage_time'] = (df['end_time'] - df['start_time']) / pd.Timedelta(minutes=1)  # 使用时长(分钟)
df['up_flow_mb'] = df['up_flow'] / 1024 / 1024  # 上行流量(MB)
df['down_flow_mb'] = df['down_flow'] / 1024 / 1024  # 下行流量(MB)
df = df[df['duration'] != 0]  # 剔除使用时长为0的行
df = df[df['up_flow'] != 0]  # 剔除上行流量为0的行
df = df[df['down_flow'] != 0]  # 剔除下行流量为0的行
df
# 剔除使用时长和流量明显异常的行
# 剔除使用时长小于10秒的行
df = df[df['usage_time'] >= 10]
fig, axs = plt.subplots(1, 3, figsize=(10, 5))
axs[0].hist(df['usage_time'])
axs[0].set_title('Usage Time')
axs[0].set_xlabel('Time (minutes)')
axs[1].hist(df['up_flow_mb'])
axs[1].set_title('Up Flow')
axs[1].set_xlabel('Up Flow (MB)')
axs[2].hist(df['down_flow_mb'])
axs[2].set_title('Down Flow')
axs[2].set_xlabel('Down Flow (MB)')
plt.show()
# APP分类信息(可根据app_id和app_class文件进行关联)
cate_df_1 = pd.read_csv('初赛数据集/app_class.csv',header=None)
cate_df_2 = pd.read_csv('复赛数据集/app_class.csv',header=None)
cate_df = pd.concat([cate_df_1,cate_df_2],axis=0)
cate_df.columns = ['appid','letter']
# 定义字母编码映射字典
char_map = {chr(i + 96): i for i in range(1, 27)}
# 将'letter'列中的字母进行编码
cate_df['letter'] = cate_df['letter'].map(char_map)
cate_dict = dict(zip(cate_df['appid'],cate_df['letter']))
df['category'] = df['appid'].map(cate_dict)
df.to_excel('data/复赛数据集1-30day.xlsx',index=False)

3.2 推荐模型建立与评价

...略,请下载完整资料:betterbench.top/#/106/detail

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/90040.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

操作员管理 微人事 项目 SpringBooot + Vue 前后端分离

操作员管理接口设计 HrController RestController RequestMapping("/system/hr") public class HrController {AutowiredHrService hrService;GetMapping("/")public List<Hr> getAllHr(){return hrService.getAllHr();}}HrService public List<…

【深度学习_TensorFlow】过拟合

写在前面 过拟合与欠拟合 欠拟合&#xff1a; 是指在模型学习能力较弱&#xff0c;而数据复杂度较高的情况下&#xff0c;模型无法学习到数据集中的“一般规律”&#xff0c;因而导致泛化能力弱。此时&#xff0c;算法在训练集上表现一般&#xff0c;但在测试集上表现较差&…

FPGA应用于图像处理

FPGA应用于图像处理 FPGA&#xff08;Field-Programmable Gate Array&#xff09;直译过来就是现场可编程门阵列。是一种可以编程的逻辑器件&#xff0c;具有高度的灵活性&#xff0c;可以根据具体需求就像编程来实现不同的功能。 FPGA器件属于专用的集成电流中的一种半定制电…

TinyVue - 华为云 OpenTiny 出品的企业级前端 UI 组件库,免费开源,同时支持 Vue2 / Vue3,自带 TinyPro 中后台管理系统

华为最新发布的前端 UI 组件库&#xff0c;支持 PC 和移动端&#xff0c;自带了 admin 后台系统&#xff0c;完成度很高&#xff0c;web 项目开发又多一个选择。 关于 OpenTiny 和 TinyVue 在上个月结束的华为开发者大会2023上&#xff0c;官方正式进行发布了 OpenTiny&#…

使用VSCode SSH实现公网远程连接本地服务器开发的详细教程

文章目录 前言1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…

【二分】搜索旋转数组

文章目录 不重复数组找最小值&#xff0c;返回下标重复数组找最小值&#xff0c;返回下标不重复数组找target&#xff0c;返回下标重复数组找target&#xff0c;返回bool重复数组找target&#xff0c;返回下标 不重复数组找最小值&#xff0c;返回下标 class Solution {public …

Windows下 MySql通过拷贝data目录迁移数据库的方法

MySQL数据库的文件目录下图所示&#xff0c; 现举例说明通过COPY文件夹data下数据库文件&#xff0c;进行数据拷贝的步骤&#xff1b;源数据库运行在A服务器上&#xff0c;拷贝到B服务器&#xff0c;假定B服务器上MySQL数据库已经安装完成&#xff0c;为空数据库。 首先进入A服…

华为云渲染实践

// 编者按&#xff1a;云计算与网络基础设施发展为云端渲染提供了更好的发展机会&#xff0c;华为云随之长期在自研图形渲染引擎、工业领域渲染和AI加速渲染三大方向进行云渲染方面的探索与研究。本次LiveVideoStackCon 2023上海站邀请了来自华为云的陈普&#xff0c;为大家分…

百度“AI智障”到AI智能体验之旅

目录 前言一、百度PLATO1.抬杠第一名2.听Ta瞎扯淡3.TA当场去世了4.智障与网友的高光时刻 二、文心一言1.设计测试用例2.随意发问3.手机端约会神器 三、体验总结&#xff1a;四、千帆大模型 前言 最近收到了文心一言3.5大模型的内测资格&#xff0c;正巧之前也体验过它的前身&q…

Request对象和response对象

一、概念 request对象和response对象是通过Servlet容器&#xff08;如Tomcat&#xff09;自动创建并传递给Servlet的。 Servlet容器负责接收客户端的请求&#xff0c;并将请求信息封装到request对象中&#xff0c;然后将request对象传 递给相应的Servlet进行处理。类似地&…

SpringBoot入门篇1 - 简介和工程创建

目录 SpringBoot是由Pivotal团队提供的全新框架&#xff0c; 其设计目的是用来简化Spring应用的初始搭建以及开发过程。 1.创建入门工程案例 ①创建新模块&#xff0c;选择Spring初始化&#xff0c;并配置模块相关基础信息 ②开发控制器类 controller/BookController.jav…

短视频矩阵系统接口部署技术搭建

前言 短视频矩阵系统开发涉及到多个领域的技术&#xff0c;包括视频编解码技术、大数据处理技术、音视频传输技术、电子商务及支付技术等。因此&#xff0c;短视频矩阵系统开发人员需要具备扎实的计算机基础知识、出色的编程能力、熟练掌握多种开发工具和框架&#xff0c;并掌握…

全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据!

全套解决方案&#xff1a;基于pytorch、transformers的中文NLP训练框架&#xff0c;支持大模型训练和文本生成&#xff0c;快速上手&#xff0c;海量训练数据&#xff01; 1.简介 目标&#xff1a;基于pytorch、transformers做中文领域的nlp开箱即用的训练框架&#xff0c;提…

开源网安受邀参加软件供应链安全沙龙,推动企业提升安全治理能力

​8月23日下午&#xff0c;合肥软件行业软件供应链安全沙龙在中安创谷科技园举办。此次沙龙由合肥软件产业公共服务中心联合中安创谷科技园公司共同主办&#xff0c;开源网安软件供应链安全专家王晓龙、尹杰受邀参会并带来软件供应链安全方面的精彩内容分享&#xff0c;共同探讨…

政府网站定期巡检:构建高效、安全与透明的数字政务

在数字时代&#xff0c;政府网站已不仅仅是一个信息发布窗口&#xff0c;更是政府与公众互动的桥梁、政务服务的主要渠道以及数字化治理的重要平台。因此&#xff0c;确保政府网站的高效运行、信息安全与透明公开就显得尤为重要。在此背景下&#xff0c;定期的网站巡检与巡查成…

xfs ext4 结合lvm 扩容、缩容 —— 筑梦之路

ext4 文件系统扩容、缩容操作 扩容系统根分区 根文件系统在 /dev/VolGroup/lv_root 逻辑卷上&#xff0c;文件系统类型为ext4&#xff0c;大小为10G&#xff0c;现在要将其扩容成20G。 给空闲空间分区# 调整分区类型为LVM&#xff0c;也就是8e类型 fdisk /dev/sdb# 选定分区后使…

2023年高教社杯 国赛数学建模思路 - 案例:FPTree-频繁模式树算法

文章目录 算法介绍FP树表示法构建FP树实现代码 建模资料 ## 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 算法介绍 FP-Tree算法全称是FrequentPattern Tree算法&#xff0c;就是频繁模式树算法&#xff0c…

JavaScript函数调用其他函数

在JavaScript中&#xff0c;函数可以调用其他函数。这通常被称为函数组合&#xff0c;它允许你通过将较简单的函数组合在一起来创建更复杂的功能。 例如&#xff1a;还是以之前的水果加工举例&#xff0c;但是现在我们需要输出&#xff0c;这个苹果有几块&#xff0c;橘子有几块…

计算机竞赛 基于大数据的时间序列股价预测分析与可视化 - lstm

文章目录 1 前言2 时间序列的由来2.1 四种模型的名称&#xff1a; 3 数据预览4 理论公式4.1 协方差4.2 相关系数4.3 scikit-learn计算相关性 5 金融数据的时序分析5.1 数据概况5.2 序列变化情况计算 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &…

基于Java的旅游信息推荐系统设计与实现,springboot+vue,MySQL数据库,前后端分离,完美运行,有三万字论文。

基于Java的旅游信息推荐系统设计与实现&#xff0c;springbootvue&#xff0c;MySQL数据库&#xff0c;前后端分离&#xff0c;完美运行&#xff0c;有三万字论文。 前台主要功能&#xff1a;登录注册、旅游新闻、景区信息、美食信息、旅游线路、现在留言、收藏、预定旅游线路…