计算机毕业设计Spark+大模型动漫推荐系统 动漫视频推荐系统 漫画分析可视化大屏 漫画爬虫 漫画推荐系统 漫画爬虫 知识图谱 大数据

《Spark+大模型动漫推荐系统》开题报告与任务书

一、引言

随着互联网技术的飞速发展,动漫产业的数据量急剧增长。用户面临着海量动漫作品的选择难题,如何从这些数据中高效地提取有价值的信息,为用户推荐符合其喜好的动漫作品,成为当前动漫产业亟需解决的问题。基于Spark的大数据处理技术和大模型(如深度学习模型)的推荐算法,本文旨在设计一个高效的动漫推荐系统,以提升用户体验,推动动漫产业的可持续发展。

二、研究背景与意义
  1. 研究背景
    • 动漫产业已经成为一个多元化、丰富化的娱乐领域,吸引了大量用户。
    • 用户对动漫作品的个性化需求不断增加,但传统推荐系统难以满足这种需求。
    • 海量动漫数据的管理和分析需要高效的数据处理技术。
  2. 研究意义
    • 提高用户体验:通过精准推荐,帮助用户快速找到符合其喜好的动漫作品。
    • 促进动漫产业发展:为动漫制作方和发行商提供市场趋势和用户偏好的数据支持。
    • 增加用户粘性:通过推荐系统提高平台的活跃度和用户满意度。
三、研究目的与内容
  1. 研究目的
    • 设计并实现一个基于Spark和大模型的动漫推荐系统。
    • 通过技术手段解决当前动漫市场中存在的问题,提升用户体验和动漫行业的竞争力。
  2. 研究内容
    • 数据采集:利用Python爬虫技术(如Selenium、Scrapy等)从各大动漫平台采集动漫数据,包括动漫标题、作者、类型、标签、评论、评分等信息。
    • 数据预处理:对采集到的数据进行清洗、去重、格式化等预处理操作,为后续分析提供高质量的数据基础。
    • 数据存储:利用Hadoop HDFS或分布式数据库进行数据存储,确保数据的可靠性和可扩展性。
    • 数据分析:使用Spark进行大规模数据分析,提取用户行为特征和动漫属性特征。
    • 推荐模型构建:基于用户行为数据和动漫属性数据,构建大模型(如深度学习模型)进行个性化推荐。
    • 可视化展示:利用Flask+ECharts搭建可视化大屏,展示推荐结果和用户行为分析数据。
四、研究方法与技术路线
  1. 研究方法
    • 文献综述法:通过查阅国内外相关文献,了解大数据处理技术和推荐系统的研究现状和发展趋势。
    • 实验法:设计并实施一系列实验,验证Spark和大模型在动漫推荐系统中的应用效果。
    • 案例分析法:选取典型动漫平台作为案例,分析其用户行为数据和动漫属性数据,验证推荐模型的准确性和有效性。
  2. 技术路线
    • 数据采集模块:利用Python爬虫技术从各大动漫平台采集数据。
    • 数据预处理模块:对数据进行清洗、去重、格式化等操作。
    • 数据存储模块:使用Hadoop HDFS或分布式数据库存储数据。
    • 数据分析模块:使用Spark进行大规模数据分析。
    • 推荐模型构建模块:基于用户行为数据和动漫属性数据,构建大模型进行推荐。
    • 可视化展示模块:利用Flask+ECharts搭建可视化大屏。
五、进度安排
  1. 2023年09月01日—2023年10月31日:查阅和收集课题相关资料,进行市场调研,确定选题。
  2. 2023年11月01日—2023年11月30日:进一步查阅资料,撰写开题报告,准备开题答辩。
  3. 2023年12月01日—2024年02月29日:系统规划、整体设计、详细设计、编写代码。
  4. 2024年03月01日—2024年03月31日:修改论文并提交论文初稿。
  5. 2024年04月01日—2024年04月15日:由指导老师评阅,修改完善论文,准备毕业答辩。
六、预期成果
  1. 实现一个基于Spark和大模型的动漫推荐系统,提高推荐准确性。
  2. 搭建可视化大屏,直观展示推荐结果和用户行为分析数据。
  3. 撰写一篇完整的毕业论文,详细阐述系统的设计与实现过程。
七、参考文献

(此处省略具体参考文献,实际撰写时应详细列出所有引用的文献)


任务书

一、任务目标

设计并实现一个基于Spark和大模型的动漫推荐系统,提高推荐准确性,提升用户体验,推动动漫产业的可持续发展。

二、任务内容
  1. 完成数据采集和预处理模块,实现数据的采集、清洗、去重和格式化。
  2. 完成数据存储模块,利用Hadoop HDFS或分布式数据库存储数据。
  3. 完成数据分析模块,使用Spark进行大规模数据分析。
  4. 构建推荐模型,基于用户行为数据和动漫属性数据,利用大模型进行个性化推荐。
  5. 搭建可视化大屏,展示推荐结果和用户行为分析数据。
三、任务要求
  1. 严格按照进度安排完成各阶段任务。
  2. 确保系统的稳定性和可靠性,进行充分的测试和优化。
  3. 撰写详细的文档和代码注释,方便后续维护和扩展。
  4. 提交完整的毕业论文和答辩材料。
四、任务时间

自2023年09月01日起至2024年04月15日止。


以上是《Spark+大模型动漫推荐系统》的开题报告和任务书,旨在通过技术手段解决当前动漫市场中存在的问题,提升用户体验和动漫行业的竞争力。

核心算法代码分享如下:

from pyspark.sql import SparkSession  
from pyspark.ml.recommendation import ALS  
from pyspark.sql.functions import col, lit  
  
# 初始化SparkSession  
spark = SparkSession.builder.appName("Spark+BigModel Anime Recommendation System").getOrCreate()  
  
# 加载数据  
# 假设我们有一个DataFrame,名为ratings,包含用户ID、动漫ID和评分  
# ratings = spark.read.csv("path/to/ratings.csv", header=True, inferSchema=True)  
# 为了演示,这里我们创建一个模拟的DataFrame  
data = [  
    (1, 101, 5.0),  
    (1, 102, 3.0),  
    (2, 101, 4.0),  
    (2, 103, 1.0),  
    (3, 102, 2.0),  
    (3, 103, 5.0)  
]  
columns = ["userId", "animeId", "rating"]  
ratings = spark.createDataFrame(data, columns)  
  
# 划分训练集和测试集(可选,但推荐)  
(training, test) = ratings.randomSplit([0.8, 0.2])  
  
# 使用ALS算法进行模型训练  
als = ALS(maxIter=5, regParam=0.01, userCol="userId", itemCol="animeId", ratingCol="rating", coldStartStrategy="drop")  
model = als.fit(training)  
  
# 生成推荐  
userRecs = model.recommendForAllUsers(10)  # 为所有用户推荐10个动漫  
animeRecs = model.recommendForAllItems(10)  # 为所有动漫推荐10个用户(可选)  
  
# 显示用户推荐结果  
userRecs.show(truncate=False)  
  
# 评估模型(使用测试集)  
predictions = model.transform(test)  
predictions.select("userId", "animeId", "prediction", "rating").show(5)  
  
# 计算均方误差(RMSE)作为评估指标  
rmse = predictions.rdd.map(lambda row: (row.prediction - row.rating) ** 2).mean() ** 0.5  
print(f"Root-mean-square error = {rmse}")  
  
# 停止SparkSession  
spark.stop()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/897505.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何快速生成大量有意义的测试数据?

如何获取 MySQL 的测试数据,这是个很经典的问题,在开发、测试和性能优化的各个环节中,获取合适的测试数据都是必不可少的。MySQL 官方还特地提供了示例库 employees,用于测试用途,但 employees 并不是万能的&#xff0…

为您的 WordPress 网站打造完美广告布局 A5广告单元格插件

一个为 WordPress 网站量身定制的强大工具,它将彻底改变您展示广告的方式 灵活多变的布局设计 A5 广告单元格插件的核心优势在于其无与伦比的灵活性。无论您是想要创建整齐的网格布局,还是希望打造独特的不规则设计,这款插件都能满足您的需求。 自定义网格数量:从 2…

vue 页面导出gif图片 img 导出gif 超简单~ 可修改播放速度

1.首先需要新建一个文件件 新建gif文件夹。这两个文件在文章最后面需要可自提 2.出gif分为两种情况 第一种情况 页面是img标签,直接导出图片作为gif 第二种情况 页面是div标签,需要导出div里面的图片作为gif 2.1页面是img标签,直接导出图…

博弈论:博弈类型空间集合;三层博弈拓展式;

目录 博弈论:博弈类型空间集合 θ(Dss-1=1 )就是博弈类型空间集合; 一、博弈的基本要素 二、博弈的主要类型 三、博弈类型空间集合的构建 三层博弈拓展式: 博弈论:博弈类型空间集合 这的博弈类型空间集合:指一方选择的策略,用符号进行表达:SDss-2(θDss-1=1) = …

手机玩使命召唤21:黑色行动6?GameViewer远程玩使命召唤教程

使命召唤21:黑色行动 6这个第一人称射击游戏,将于10月25号上线!如果你是使命召唤的老玩家,是不是也在期待这部新作?其实这个游戏不仅可以用电脑玩,还可以用手机玩,使用网易GameViewer远程就能让…

Golang | Leetcode Golang题解之第502题IPO

题目: 题解: func findMaximizedCapital(k, w int, profits, capital []int) int {n : len(profits)type pair struct{ c, p int }arr : make([]pair, n)for i, p : range profits {arr[i] pair{capital[i], p}}sort.Slice(arr, func(i, j int) bool {…

FileLink跨网文件摆渡系统:重构跨网文件传输新时代

在数字化浪潮的推动下,企业对于数据的高效利用和安全管理提出了前所未有的要求。面对不同网络环境间的文件传输难题,传统方法往往显得力不从心,不仅效率低下,还存在极大的安全隐患。而FileLink跨网文件摆渡系统的出现,…

http服务器的实现和性能测试

http服务器的实现 本文使用上一篇博文实现的epollreactor百万并发的服务器实现了一个使用http协议和WebSocket协议的WebServer。 完整代码请看我的github项目 1. 水平触发(Level Trigger)与边沿触发(Edge Trigger) 1.1 水平触发 水平触发是一种状态驱动机制。当文件描述符&a…

【学习AI-相关路程-mnist手写数字分类-python-硬件:jetson orin NX-自我学习AI-基础知识铺垫-遇到问题(1) 】

【学习AI-相关路程-mnist手写数字分类-python-硬件:jetson orin NX-自我学习AI-基础知识铺垫-遇到问题(1) 】 1、前言2、先行了解(1)学习基础知识-了解jetson orin nx 设备(2)学习python&AI…

AUTOSAR_EXP_ARAComAPI的6章笔记(2)

☞返回总目录 相关总结:AutoSar AP CM实例说明符的使用方法总结 6.2 实例说明符的使用方法 一、InstanceSpecifier 的概念 InstanceSpecifier 是在 [3] 中定义的一个核心概念,它由符合特定模型元素绝对路径的模型元素 shortName 组成,表现…

自定义中文排序在Java中的实现与注意事项

目录 前言1. 基本知识2. 实战 前言 #1024程序员节 | 征文# 对于Java的基本知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRUD的功能整理(持续更新) 原先的Java中文…

Ubuntu(22.04)本地部署Appsmith

Ubuntu(22.04)安装Appsmith 简要介绍 Appsmith 是一个开源的低代码开发平台,旨在帮助开发者和非开发者快速构建定制化的内部应用程序和管理工具。通过直观的拖拽界面和丰富的预配置组件,Appsmith 让用户无需编写大量代码即可创建…

【C++】string类(2)

🥳个人主页: 起名字真南 🥳个人专栏:【数据结构初阶】 【C语言】 【C】 目录 引言1 模拟实现string类基本框架2 实现string类中的主要成员函数2.1 Push_Back 函数2.2 reserve 函数2.3 append 函数2.4 c_str 函数2.5 begin ,end 函数2.5 operator 函数2.6…

IDEA开发工具使用技巧积累

一、IDEA 工具设置默认使用maven的settings.xml文件 第一步:打开idea工具,选中 File ——> New Projects Setup ——> Settings for New Projects 第二步:先设置下自动构建项目这个选项 第三步:选中 Build Tools ——>…

word删除空白页 | 亲测有效

想要删掉word里面的末尾空白页,但是按了delete之后也没有用 找了很久找到了以下亲测有效的方法 1. 通过鼠标右键在要删除的空白页面处显示段落标记 2. 在字号输入01,按ENTER(回车键) 3.成功删除了!! PS…

Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容

介绍 在当今数据驱动的世界中,抓取动态网页内容变得越来越重要,尤其是像抖音这样的社交平台,动态加载的评论等内容需要通过特定的方式来获取。传统的静态爬虫方法难以处理这些由JavaScript生成的动态内容,Selenium爬虫技术则是一…

基于SSM大学校医院信息管理系统的设计

管理员账户功能包括:系统首页,个人中心,校医管理,用户管理,在线问诊管理,线上挂号管理,病例记录管理,系统管理 校医账号功能包括:系统首页,个人中心&#xf…

用Java爬虫API,轻松获取taobao商品SKU信息

在电子商务的世界里,SKU(Stock Keeping Unit,库存单位)是商品管理的基础。对于商家来说,SKU的详细信息对于库存管理、价格策略制定、市场分析等都有着重要作用。taobao作为中国最大的电子商务平台之一,提供…

uniapp 微信小程序分包操作

1. 在项目根目录创建一个新的目录,名称为分包名称 2. 打开manifest.json,选择源码视图,加入以下代码 "optimization" : {"subPackages" : true } 3. 在pages.json中,pages后面添加分包代码 "subPackag…

Linux基础命令(入门)

linux 用户 root 用户 一个特殊的管理帐户 也被称为超级用户 root已接近完整的系统控制 对系统损害几乎有无限的能力 除非必要,不要登录为 root 普通( 非特权 ) 用户权限有限 造成损害的能力比较有限 linux的哲学思想(优点&#xf…