一、Park变换
坐标关系:
I
d
=
I
α
∗
c
o
s
θ
e
+
I
β
∗
s
i
n
θ
e
I_d = I_\alpha*cos\theta_e + I_\beta*sin\theta_e
Id=Iα∗cosθe+Iβ∗sinθe
I
q
=
−
I
α
∗
s
i
n
θ
e
+
I
β
∗
c
o
s
θ
e
I_q = -I_\alpha*sin\theta_e + I_\beta*cos\theta_e
Iq=−Iα∗sinθe+Iβ∗cosθe
坐标转换矩阵:
T
2
s
/
2
r
=
[
cos
(
θ
e
)
sin
(
θ
e
)
−
sin
(
θ
e
)
cos
(
θ
e
)
]
T_{2s/2r} = \begin{bmatrix} \cos(\theta_e ) & \sin(\theta_e ) \\ -\sin(\theta_e ) & \cos(\theta_e) \end{bmatrix}
T2s/2r=[cos(θe)−sin(θe)sin(θe)cos(θe)]
坐标转换公式:
[
i
d
i
q
]
=
T
2
s
/
2
r
[
i
α
i
β
]
\begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix} =T_{2s/2r} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}
[idiq]=T2s/2r[iαiβ]
结果关系:
[
i
d
i
q
]
=
[
cos
(
θ
e
)
sin
(
θ
e
)
−
sin
(
θ
e
)
cos
(
θ
e
)
]
[
i
α
i
β
]
\begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix} = \begin{bmatrix} \cos(\theta_e) & \sin(\theta_e) \\ -\sin(\theta_e) & \cos(\theta_e) \end{bmatrix} \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix}
[idiq]=[cos(θe)−sin(θe)sin(θe)cos(θe)][iαiβ]
二、反Park变换
坐标转换矩阵:
T
2
r
/
2
s
=
T
2
s
/
2
r
−
1
=
[
cos
(
θ
e
)
−
sin
(
θ
e
)
sin
(
θ
e
)
cos
(
θ
e
)
]
T_{2r/2s} = T_{2s/2r} ^{-1}= \begin{bmatrix} \cos(\theta_e) & -\sin(\theta_e) \\ \sin(\theta_e) & \cos(\theta_e) \end{bmatrix}
T2r/2s=T2s/2r−1=[cos(θe)sin(θe)−sin(θe)cos(θe)]
坐标转换公式:
[
i
α
i
β
]
=
T
2
r
/
2
s
[
i
d
i
q
]
\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} =T_{2r/2s} \begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix}
[iαiβ]=T2r/2s[idiq]
结果关系:
[
i
α
i
β
]
=
[
cos
(
θ
e
)
−
sin
(
θ
e
)
sin
(
θ
e
)
cos
(
θ
e
)
]
[
i
d
i
q
]
\begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} =\begin{bmatrix} \cos(\theta_e) & -\sin(\theta_e) \\ \sin(\theta_e) & \cos(\theta_e) \end{bmatrix} \begin{bmatrix} i_{d} \\ i_{q} \end{bmatrix}
[iαiβ]=[cos(θe)sin(θe)−sin(θe)cos(θe)][idiq]
坐标关系:
I
α
=
I
d
∗
c
o
s
θ
e
−
I
q
∗
s
i
n
θ
e
I_\alpha = I_d*cos\theta_e - I_q*sin\theta_e
Iα=Id∗cosθe−Iq∗sinθe
I
β
=
I
d
∗
s
i
n
θ
e
+
I
q
∗
c
o
s
θ
e
I_\beta= I_d*sin\theta_e + I_q*cos\theta_e
Iβ=Id∗sinθe+Iq∗cosθe