【视频生成大模型】 视频生成大模型 THUDM/CogVideoX-2b
- CogVideoX-2b 模型介绍
- 发布时间
- 模型测试生成的demo视频
- 生成视频限制
- 运行环境安装
- 运行模型
- 下载
- 开源协议
- 参考
CogVideoX-2b 模型介绍
CogVideoX是 清影 同源的开源版本视频生成模型。
基础信息:
发布时间
2024年8月份
模型测试生成的demo视频
https://github.com/THUDM/CogVideo/raw/main/resources/videos/1.mp4
https://github.com/THUDM/CogVideo/raw/main/resources/videos/2.mp4
生成视频限制
- 提示词语言 English*
- 提示词长度上限 226 Tokens
- 视频长度 6 秒
- 帧率 8 帧 / 秒
- 视频分辨率 720 * 480,不支持其他分辨率(含微调)
运行环境安装
# diffusers>=0.30.1
# transformers>=0.44.0
# accelerate>=0.33.0 (suggest install from source)
# imageio-ffmpeg>=0.5.1
pip install --upgrade transformers accelerate diffusers imageio-ffmpeg
运行模型
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
torch_dtype=torch.float16
)
pipe.enable_model_cpu_offload()
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
- Quantized Inference
PytorchAO 和 Optimum-quanto 可以用于对文本编码器、Transformer 和 VAE 模块进行量化,从而降低 CogVideoX 的内存需求。这使得在免费的 T4 Colab 或较小 VRAM 的 GPU 上运行该模型成为可能!值得注意的是,TorchAO 量化与 torch.compile 完全兼容,这可以显著加快推理速度。
# To get started, PytorchAO needs to be installed from the GitHub source and PyTorch Nightly.
# Source and nightly installation is only required until next release.
import torch
from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline
from diffusers.utils import export_to_video
from transformers import T5EncoderModel
from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
quantization = int8_weight_only
text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-2b", subfolder="text_encoder", torch_dtype=torch.bfloat16)
quantize_(text_encoder, quantization())
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5b", subfolder="transformer", torch_dtype=torch.bfloat16)
quantize_(transformer, quantization())
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-2b", subfolder="vae", torch_dtype=torch.bfloat16)
quantize_(vae, quantization())
# Create pipeline and run inference
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-2b",
text_encoder=text_encoder,
transformer=transformer,
vae=vae,
torch_dtype=torch.bfloat16,
)
pipe.enable_model_cpu_offload()
pipe.vae.enable_tiling()
# prompt 只能输入英文
prompt = "A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance."
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=50,
num_frames=49,
guidance_scale=6,
generator=torch.Generator(device="cuda").manual_seed(42),
).frames[0]
export_to_video(video, "output.mp4", fps=8)
下载
model_id: THUDM/CogVideoX-2b
下载地址:https://hf-mirror.com/THUDM/CogVideoX-2b 不需要翻墙
开源协议
License: apache-2.0
参考
- https://hf-mirror.com/THUDM/CogVideoX-2b
- https://github.com/THUDM/CogVideo