动态规划入门:斐波那契数列模型以及多状态(C++)

斐波那契数列模型以及多状态

    • 动态规划简述
    • 斐波那契数列模型
      • 1.第 N 个泰波那契数(简单)
      • 2.三步问题(简单)
      • 3.使⽤最⼩花费爬楼梯(简单)
      • 4.解码方法(中等)
    • 简单多状态
      • 1.打家劫舍(中等)
      • 2.打家劫舍II(中等)
      • 3.粉刷房子(中等)
      • 4.删除并获得点数(中等)
      • 5.买卖股票的最佳时期含⼿续费(中等)
      • 6.买卖股票的最佳时机含冷冻期(中等)
      • 7.买卖股票的最佳时机III(困难)
      • 8.买卖股票的最佳时机IV(困难)

动态规划简述

    动态规划(Dynamic programming,简称 DP)是一种解决多阶段决策问题的算法思想。它将问题分解为多个阶段,并通过保存中间结果来避免重复计算,从而提高效率。


动态规划的解题步骤一般分为以下几步:

  1. 思考状态表示,创建dp表(重点)
  2. 分析出状态转移方程(重点)
  3. 初始化
  4. 确定填表顺序
  5. 确定返回值

斐波那契数列模型

1.第 N 个泰波那契数(简单)

链接:第 N 个泰波那契数

  • 题目描述

在这里插入图片描述

  • 做题步骤
  1. 状态表示

面对动态规划问题,我们一般有两种状态表示:

  1. 以某一个位置为起点,……
  2. 以某一个位置为终点,……

我们一般优先考虑第1种表示,但如果第1种无法解决就考虑第2种。

在这里插入图片描述

  1. 状态转移方程
    这个题目直接告诉了我们状态转移方程:dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

  2. 初始化
    泰波那契数的第0、1、2个是特殊的,不满足状态转移方程,因此我们需要初始化这三个位置为0、1、1

  3. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序很明显是从左往右

  4. 返回值
    根据状态表示,假设要求的是第n个,返回的应该是dp[n]

  • 代码实现
class Solution {
public:
    int tribonacci(int n) 
    {
        //对于第0、1、2单独处理
        if(n == 0) 
            return 0;
        if(n == 1 || n == 2)
            return 1;
        //dp[i]:第i个泰波那契数
        vector<int> dp(n + 1);
        dp[0] = 0; dp[1] = 1; dp[2] = 1; 
           
        for(int i = 3; i < n + 1; i++)
        {
            dp[i] = dp[i-1] + dp[i-2] + dp[i-3];
        }
        return dp[n];
        //空间复杂度:O(N)
        //时间复杂度:O(N)
    }
};

//不知道大家有没有发现向后填表的过程其实只需要前置的3个状态
//其余的状态都是多余的,我们可以用有限的变量来保存这些状态,这样就实现了空间优化
//这种优化方式被称为“滚动数组”
//经过优化原O(N)->O(1) O(N^2)->O(N)
//但这并不是动态规划讲解的要点,所以我只会把两种优化情况的代码给出

// class Solution {
// public:
//     int tribonacci(int n) 
//     {
//         if(n == 0) 
//             return 0;
//         if(n == 1 || n == 2)
//             return 1;

//         int t1 = 0;
//         int t2 = 1;
//         int t3 = 1;
//         int ret = 0;
           
//         for(int i = 3; i < n + 1; i++)
//         {
//             ret = t1 + t2 + t3;
//             t1 = t2;
//             t2 = t3;
//             t3 = ret;
//         }
//         return ret;
//     }
// };

2.三步问题(简单)

链接:三步问题

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    在这里插入图片描述

  2. 状态转移方程
    到达i阶可以转换成先到达i - 3、i - 2、i - 1阶,三者相加得到结果,所以状态转移方程为:dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]。

  3. 初始化
    为了保证填表不越界,我们把到达1、2、3阶的方法初始化

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序从左往右

  5. 返回值
    根据状态表示,假设要求的是n阶,返回的应该是dp[n]

  • 代码实现
class Solution {
public:
    int waysToStep(int n) 
    {
        //1、2、3阶特殊处理
        if(n == 1) return 1;
        if(n == 2) return 2;
        if(n == 3) return 4;

        //dp[i]表示到达i阶的方法数
        vector<int> dp(n+1); //多开一个空间,可以让下标和层数对应
        dp[1] = 1; dp[2] = 2; dp[3] = 4;
        const int mod = 1e9 + 7;  //有可能超出,需要取模

        for(int i = 4; i < n + 1; i++)
        {
            dp[i] = ((dp[i-1] + dp[i-2]) % mod + dp[i-3]) % mod;
        }
        return dp[n];
        //时间复杂度:O(N)
        //空间复杂度:O(N)
    }
};

3.使⽤最⼩花费爬楼梯(简单)

链接:使⽤最⼩花费爬楼梯

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    这个题目的思路和第2题很相似,要到达终点n阶,我们可以从n - 1阶走一步、n - 2阶走两步到终点,从中选择费用最低的一方(从当前阶离开需要支付离开费用);至于到达n - 1、n - 2阶的最低费用,我们可以以n - 1、n - 2层为终点进行分析,依此类推。到达终点的过程需要到达每一层的最低费用,我们可以用一个dp表存储,dp[i]表示到达下标i台阶所需要的最低费用

  2. 状态转移方程
    到达i阶的最低花费可以转换为min(到达i - 1阶的最低花费 + 走出这一阶的花费, 到达i - 2阶的最低花费 + 走出这一阶的花费),所以状态转移方程为:dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])。

  3. 初始化
    由转移方程可知更新某个状态需要前置的两个状态,为了确保填表时不越界,单独处理走到0、1阶的最低花费

  4. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序从左往右

  5. 返回值
    根据状态表示,假设数组有n个元素(终点是n阶),返回的应该是dp[n]

  • 代码实现
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {      
        //dp[i] 表示到这一层的最小花费
        int n = cost.size();
        vector<int> dp(n + 1);
        //一开始就可以在0或1阶,花费为0,vector默认给0,不用处理

        for(int i = 2; i < n + 1; i++)
        {
            dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
        }

        return dp[n];
        //空间复杂度:O(N)
        //时间复杂度:O(N)
    }
};

// //第二种写法:反着来,以某个位置为起点,……
// class Solution {
// public:
//     int minCostClimbingStairs(vector<int>& cost) 
//     {      
//         //dp[i]:这一层为起点,到终点的最低花费
//         int n = cost.size();
//         vector<int> dp(n + 1);
//         dp[n] = 0;
//         dp[n - 1] = cost[n - 1];
//         for(int i = n - 2; i >= 0; i--)
//         {            
//             dp[i] = min(dp[i + 1] + cost[i], dp[i + 2] + cost[i]);
//         }

//         return min(dp[0], dp[1]);
//     }
// };

4.解码方法(中等)

链接:解码方法

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    在这里插入图片描述

  2. 状态表示
    除去第一位,每个位置都有单独解码和联合解码两种方式,n位置的状态转移方程为:dp[n] = dp[n - 1](单独解码成功)+ dp[n - 2](联合解码成功)

  3. 初始化
    依据状态转移方程,某位置状态需要前置的两个状态,为了避免越界,我们需要单独处理第1、2个位置,但观察上面的分析过程,可以发现第2个位置和其它位置一样也有两种解码可能,我们可以在dp表前面多加个虚拟节点并初始为1,这样就只需要处理第1个位置了。(看图看图)

在这里插入图片描述

  1. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序从左往右

  2. 返回值
    依据状态定义,假设序列长度为n,返回的应该是以n位置为结尾的解码可能数,即dp[n]。

  • 代码实现
class Solution {
public:
    int numDecodings(string s) 
    {
        int n = s.size();
        //dp[i]表示以i位置为结尾的解码可能数
        vector<int> dp(n + 1);
        //第一个位置就为0,最终结果已经是0
        if(s[0] == '0')
            return 0;
        //初始化虚拟节点和第1个位置
        dp[1] = dp[0] = 1;
        
        for(int i = 2; i < n + 1; i++)
        {
            //单独解码
            if(s[i - 1] != '0')                      
                dp[i] += dp[i-1];
            
            //联合解码(联合解码小于10说明存在前导0,无法联合解码)
            int com = (s[i - 2] - '0') * 10 + (s[i - 1] - '0');
            if(com >= 10 && com <= 26)                       
                dp[i] += dp[i-2];

            //都失败的情况是'00',最终结果已经是0,这里可不加
            //两个连续的0,后面全都是0
            if(dp[i] == 0)
                return 0;        
        }

        return dp[n];
    }
};

简单多状态

1.打家劫舍(中等)

链接:打家劫舍

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据前面的做题经验,我们可以把状态表示为以i位置为结尾的最大偷窃金额,但每个位置有偷和不偷两种选择,所以可以把状态再进行细化:状态f表示以i位置为结尾并偷窃本位置的最大金额;状态g表示以i位置为结尾但不偷窃本位置的最大金额。

在这里插入图片描述

  1. 状态转移方程
    由前面的分析可知,要偷i位置(f)需要i - 1位置不偷(g)的最大金额,不偷i位置就选择i - 1位置偷和不偷两种选择中大的一方,所以状态转移方程为:
    (1) f[i] = g[i - 1] + nums[ i ] (本位置可偷金额);
    (2) g[i] = max(g[i - 1], f[i - 1])

  2. 初始化
    由状态转移方程可知当今状态需要前一个状态,为保证填表时不越界,单独处理第一个位置:f[0] = nums[0],g[0] = 0

  3. 填表顺序
    保证填当前状态时,所需状态已经计算过,填表顺序从左往右

  4. 返回值
    把自己代入成小偷,相邻位置不能同时偷的情况下是需要进行选择的,但偷的过程中不知道后面房子的价值,只能走一步看一步,保证每一步都是最好的,偷到最后一定是最优结果。假设数组有n个元素,返回值为max(f[n - 1], g[n - 1])。

  • 代码实现
class Solution {
public:
    int rob(vector<int>& nums) 
    {
        int n = nums.size();
        vector<int> f(n); //f[i]表示到底这个位置并偷窃的最大金额
        auto g = f;  //g[i]表示到达这个位置不偷窃的最大金额
        f[0] = nums[0]; //初始化f[0],g[0]默认0不用处理
        for(int i = 1; i < n; i++)
        {
            f[i] = g[i - 1] + nums[i];
            g[i] = max(g[i - 1], f[i - 1]);
        }
        return max(f[n - 1], g[n - 1]);
        //空间复杂度:O(N)
        //时间复杂度:O(N)
    }
};

2.打家劫舍II(中等)

链接:打家劫舍II

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    这个题和前一个题唯一的不同只有首尾成环这一个点,我们延用上个题目的状态表示:状态f表示以i位置为结尾并偷窃本位置的最大金额;状态g表示以i位置为结尾但不偷窃本位置的最大金额。
    处理成环问题,最直接的思路就是拆解。
    在这里插入图片描述

  2. 状态转移方程
    和上一道题目一致,状态转移方程为:
    (1) f[i] = g[i - 1] + nums[ i ] (本位置可偷金额);
    (2) g[i] = max(g[i - 1], f[i - 1])

  3. 初始化
    和上一道题目一致。

  4. 填表顺序
    从左往右。

  5. 返回值
    _rob函数表示指定区间的打家劫舍,返回值为:
    max(nums[0] + _rob(nums, 2, n - 2), _rob(nums, 1, n - 1))

  • 代码实现
class Solution {
public:
    int _rob(vector<int>& nums, int left,int right) 
    {
        //区间不存在返回0
        if(left > right)
            return 0;
        int n = nums.size();
        
        vector<int> f(n);  //到这个屋子偷的最大金额
        auto g = f; //到这个屋子不偷的最大金额
        f[left] = nums[left];

        for(int i = left + 1; i <= right; i++)
        {
            f[i] = g[i - 1] + nums[i];
            g[i] = max(f[i - 1],g[i - 1]);
        }
        return max(f[right],g[right]);
    }
    int rob(vector<int>& nums) 
    {
        int n = nums.size();
        return max(nums[0] + _rob(nums, 2, n - 2), _rob(nums, 1, n - 1));
    }
};

3.粉刷房子(中等)

链接:粉刷房子

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    依据经验和题目要求,我们可以把状态定义为把第i号房子粉刷成j颜色的最小花费。
    在这里插入图片描述

  2. 状态转移方程
    状态转移方程为(0是红色、1是蓝色、2是绿色):
    (1)dp[i][0] = min(dp[i - 1][1], dp[i - 1][2]) + cost[i][0](花费)
    (2)dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + cost[i][1]
    (3)dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + cost[i][2]

  3. 初始化
    为了保证填表不越界,我们要初始化第一行的值,但是那样太麻烦了,我们可以多开一行并初始化0,这样就不用单独处理第一行了。(注意和cost数组的下标对应关系)

  4. 填表顺序
    从上往下,每一行从左往右。

5.返回值
依据状态表示,假设最后的房子是i号,返回值为min({dp[n][0], dp[n][1], dp[n][2]})。

  • 代码实现
class Solution {
public:
    int minCost(vector<vector<int>>& costs)
    {
        int n = costs.size();
        //dp[i][j]表示第i号房子粉刷成j颜色的最低花费
        //其中0表示红色,1表示蓝色,2表示绿色
        vector<vector<int>> dp(n + 1, vector<int>(3));
        //空间多开一行并初始化0,不用单独处理第一行

        for (int i = 1; i < n + 1; i++)
        {
            dp[i][0] = costs[i - 1][0] + min(dp[i - 1][1], dp[i - 1][2]);
            dp[i][1] = costs[i - 1][1] + min(dp[i - 1][0], dp[i - 1][2]);
            dp[i][2] = costs[i - 1][2] + min(dp[i - 1][0], dp[i - 1][1]);
        }
        return min({dp[n][0], dp[n][1], dp[n][2]});
        //时间复杂度:O(N)
        //空间复杂度:O(N)
    }
};

4.删除并获得点数(中等)

链接:删除并获得点数

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    在这里插入图片描述

  2. 状态转移方程
    这个题就是变形的“打家劫舍”,转移方程一致:
    (1) f[i] = g[i - 1] + v[ i ] (删除本位置可得点数);
    (2) g[i] = max(g[i - 1], f[i - 1])

  3. 初始化
    数组转化完成后dp表不需要处理。

  4. 填表顺序
    从左往右。

  5. 返回值
    返回值为max(f[N - 1],g[N - 1])

  • 代码实现
class Solution {
public:
    int deleteAndEarn(vector<int>& nums)
    {
        int n = nums.size();
    
        //创建数组进行映射
        //题目中1 <= nums[i] <= 10000
        const int N = 10001;
        int v[N] = {0};
        for(auto val : nums)
            v[val] += val;

        //“打家劫舍”
        vector<int> f(N); //f[i]表示以i区域为结尾并且删除本区域的最大点数
        auto g = f;  //g[i]表示以i区域为结尾但不删除本区域的最大点数
        for (int i = 1; i < N; i++)
        {
            f[i] = g[i - 1] + v[i];
            g[i] = max(f[i - 1], g[i - 1]);
        }
        
        return max(f[N - 1],g[N - 1]);
        //时间复杂度:O(N)
        //空间复杂度:O(1)
    }
};


//上面的写法简洁一些,但无论数据量多少都会遍历10000次
//可以记录数组的最大、最小值,来加快速度
// class Solution {
// public:
//     int deleteAndEarn(vector<int>& nums)
//     {
//         int n = nums.size();
//         vector<int> v(10001);
//         //先遍历一次
//         int _max = nums[0];
//         int _min = nums[0];
//         for (int i = 0; i < n; i++)
//         {
//             v[nums[i]] += nums[i];
//             _max = max(_max, nums[i]);
//             _min = min(_min, nums[i]);
//         }

//         vector<int> f(10001);
//         auto g = f;
//         for (int i = _min; i <= _max; i++)
//         {
//             f[i] = g[i - 1] + v[i];
//             g[i] = max(f[i - 1], g[i - 1]);
//         }
        
//         return max(f[_max],g[_max]);
//     }
// };

5.买卖股票的最佳时期含⼿续费(中等)

链接:买卖股票的最佳时期含⼿续费

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    在这里插入图片描述

dp[i][j]:第i天结束时处于j状态的最大利润。

  1. 状态转移方程,0表示结束有股票,1表示结束没有股票,fee是手续费,prices[i]表示第i天的股票价格
    (1)dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i])
    (2)dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee)

  2. 初始化
    初始化第0天状态即可,dp[0][0] -= prices[0];

  3. 填表顺序
    从上到下。

  4. 返回值
    返回值为:max(dp[n - 1][1], dp[n - 1][0])

  • 代码实现
class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) 
    {
        int n = prices.size();
        //dp[i][j]:第i天结束处于j状态的最大利润
        vector<vector<int>> dp(n, vector<int>(2));
        //这种解法买入还是卖出交手续费都一样(反正买入了一定会卖出)
        dp[0][0] -= prices[0];

        for(int i = 1; i < n; i++)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return max(dp[n - 1][1], dp[n - 1][0]);
        //时间复杂度:O(N)
        //空间复杂度:O(N)
    }
};

6.买卖股票的最佳时机含冷冻期(中等)

链接:买卖股票的最佳时机含冷冻期

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    在这里插入图片描述

  2. 状态转移方程
    0是买入(有股票)、1是可交易、2是冷冻,prices[i]表示第i天的股票价格,状态转移方程为:
    (1)dp[i][0] = max(dp[i - 1][1] - prices[i], dp[i - 1][0])
    (2)dp[i][1] = max(dp[i - 1][2], dp[i - 1][1])
    (3)dp[i][2] = dp[i - 1][0] + prices[i]

  3. 初始化
    当前天的三种状态需要前一天的状态,所以初始化dp表的第一行
    dp[0][0]:想该天结束后处于买入状态,必须把股票买了,dp[0][0] = -prices[i];
    dp[0][1]:什么都不干,dp[0][1] = 0;
    dp[0][2]:想该天结束处于冷冻,在同一天买入和卖出,dp[0][2] = 0;

  4. 填表顺序
    从上到下。

  5. 返回值
    最大值应该手中没有股票,假设数组有n个元素,最大值为max(dp[n - 1][1], dp[n - 1][ 2 ])

  • 代码实现
class Solution {
public:
    int maxProfit(vector<int>& prices) 
    {
        int n = prices.size();
        //dp[i][j]:第i天结束后处于j状态时的最大利润
        vector<vector<int>> dp(n, vector<int>(3));
        //初始化
        dp[0][0] -= prices[0];

        for(int i = 1; i < n; i++)
        {
            dp[i][0] = max(dp[i - 1][1] - prices[i], dp[i - 1][0]);
            dp[i][1] = max(dp[i - 1][2], dp[i - 1][1]);
            dp[i][2] = dp[i - 1][0] + prices[i];
        }
        
        return max(dp[n - 1][2],dp[n - 1][1]);
    }
};

7.买卖股票的最佳时机III(困难)

链接:买卖股票的最佳时机III

  • 题目描述
    在这里插入图片描述

  • 做题步骤

  1. 状态表示
    在这里插入图片描述

  2. 状态转移方程
    由前面的分析可知,状态转移方程为:
    (1)f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i])
    (2)if(j >= 1) g[i][j] = max(g[i - 1][j], f[i - 1][j - 1] + prices[i])
      else g[i][j] = g[i - 1][j]

  3. 初始化
    需要i = 0的状态,初始化第一行。
    (1)处于第一行的时候只有f[0][0]和g[0][0]存在,f[0][0] = -prices[0],g[0][0] = 0
    (2)为了避免不存在的状态干扰取max值,我们把不存在的状态统一初始化为 INT_MIN / 2。(INT_MIN会越界,尽可能小就行)

  4. 填表顺序
    从上往下填每一列,从左往右填每一行。

  5. 返回值
    返回最后一行的最大值即可。

  • 代码实现
class Solution {
public:
    //可能会越界,取INT_MIN的一半
    const int INF = INT_MIN / 2;
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        //dp[i][j]表示在第i天结束后完成j次交易,处于""状态下的最大利润
        vector<vector<int>> f(n, vector<int>(3, INF));  //买入
        auto g = f;  //可交易
        //初始化
        f[0][0] = -prices[0];
        g[0][0] = 0;

        for (int i = 1; i < n; i++)
        {
            for(int j = 0; j < 3; j++)
            {
                f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);
                g[i][j] = g[i - 1][j];
                //j == 0的时候前置状态f[i - 1][j - 1]不存在
                if(j >= 1)
                    g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
            }                                    
        }
        return max({g[n - 1][0], g[n - 1][1], g[n - 1][2]});
    }
};

8.买卖股票的最佳时机IV(困难)

这个题目的思考方式和第7题完全一致,大家可以先自己试着做一下
链接:买卖股票的最佳时机IV

  • 代码实现
class Solution {
public:
    const int INF = INT_MIN / 2;
    int maxProfit(int k, vector<int>& prices) 
    {           
        int n = prices.size();
        //n天最多完成n / 2次交易,k不能超过这个值
        k = min(k, n / 2);
        //买入
        //dp[i][j]表示在第i天结束后完成j次交易,处于""状态下的最大利润
        vector<vector<int>> f(n, vector<int>(k + 1, INF));
        //卖出
        auto g = f;
        //初始化(先买再说)
        f[0][0] = -prices[0];
        g[0][0] = 0;

        for (int i = 1; i < n; i++)
        {
            for(int j = 0; j <= k; j++)
            {
                f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);
                g[i][j] = g[i - 1][j];
                if(j >= 1)
                    g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);
            }                                    
        }
        int ret = g[n - 1][0];
        //把利润最大的那个找出来
        for(int j = 1; j <= k; j++)
        {
            ret = max(ret, g[n - 1][j]);
        }
        return ret;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/89333.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

营销数字化|企业级 AIGC 工具的「iPhone 时刻」

2007 年&#xff0c;乔布斯发布了第一款 iPhone&#xff0c;从此彻底改变了手机行业的市场走向。iPhone 成功的背后&#xff0c;一个很重要的原因是&#xff1a;它让用户以更简单、更符合直觉的方式来使用手机。 如今&#xff0c;AIGC 工具也在等待它的「iPhone 时刻」&#xf…

keepalived+lvs(DR)(四十六)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、作用 二、调度器配置 三、web节点配置 一、作用 使用keepalived解决lvs的单点故障 高可用集群 二、调度器配置 安装keepalived yum install -y k…

Qt应用开发(基础篇)——富文本浏览器 QTextBrowser

一、前言 QTextBrowser类继承于QTextEdit&#xff0c;是一个具有超文本导航的富文本浏览器。 框架类 QFramehttps://blog.csdn.net/u014491932/article/details/132188655 滚屏区域基类 QAbstractScrollAreahttps://blog.csdn.net/u014491932/article/details/132245486 文…

【C#学习笔记】匿名函数和lambda表达式

文章目录 匿名函数匿名函数的定义匿名函数作为参数传递匿名函数的缺点 lambda表达式什么是lambda表达式闭包 匿名函数 为什么我们要使用匿名函数&#xff1f;匿名函数存在的意义是为了简化一些函数的定义&#xff0c;特别是那些定义了之后只会被调用一次的函数&#xff0c;与其…

Jenkins自动化部署Vue项目

1、新建item&#xff0c;选择 Freestyle project 2、源码管理选择git&#xff0c;输入git仓库地址和授权账号&#xff0c;并指明要部署的分支 3、构建选择 Execute shell&#xff0c;输入vue项目打包命令 命令示例&#xff1a; source /etc/profile node -v npm config set re…

从头开始:将新项目上传至Git仓库的简易指南

无论您是一个经验丰富的开发者还是一个刚刚起步的新手&#xff0c;使用Git来管理您的项目是一个明智的选择。Git是一个强大的版本控制系统&#xff0c;它可以帮助您跟踪项目的变化、合并代码以及与团队成员协作。在本文中&#xff0c;我们将为您提供一步步的指南&#xff0c;教…

基于开源模型搭建实时人脸识别系统(四):人脸质量

续人脸识别实战之基于开源模型搭建实时人脸识别系统&#xff08;三&#xff09;&#xff1a;人脸关键点、对齐模型概览与模型选型_CodingInCV的博客-CSDN博客 不论对于静态的人脸识别还是动态的人脸识别&#xff0c;我们都会面临一个问题&#xff0c;就是输入的人脸图像的质量可…

linux————keepalived+LVS(DR模式)

一、作用 使用keepalived解决LVS的单点故障 高可用集群 二、 调度器配置 环境 两台LVS服务 一主一备 两台web服务 采用nginx &#xff08;实现LVS负载均衡&#xff09; 服务ip 主LVS 192.168.100.3 备LVS 192.168.100.6 web1 192.…

Android studio之GridView使用

目录 效果图&#xff1a;![在这里插入图片描述](https://img-blog.csdnimg.cn/86e4a48a71164dec82613d58b1fbaa1c.jpeg)代码&#xff1a; 效果图&#xff1a; 代码&#xff1a; UserGridviewAdapter package com.example.gridviewpro.Adapter;import android.content.Contex…

盛最多水的容器——力扣11

int maxArea(vector<int>& height) {int l=0, r=height.size()

在百度地图中添加自定义全屏控件

百度地图中添加全屏控件 前置知识&#xff1a; 进入整个页面的全屏模式 &#xff1a;document.documentElement.requestFullscreen() 进入特定元素的全屏模式 &#xff1a; document.getElementById("ID").requestFullscreen() 退出全屏&#xff1a;document.exitFu…

【PHP】函数-作用域可变函数匿名函数闭包常用系统函数

文章目录 函数定义&使用命名规则参数种类默认值引用传递函数返回值return关键字 作用域global关键字静态变量 可变函数匿名函数闭包常用系统函数输出函数时间函数数学函数与函数相关函数 函数 函数&#xff1a;function&#xff0c;是一种语法结构&#xff0c;将实现某一个…

时序预测 | Matlab实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元时间序列预测

时序预测 | Matlab实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元时间序列预测 目录 时序预测 | Matlab实现SO-CNN-BiGRU蛇群算法优化卷积双向门控循环单元时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 时序预测 | Matlab实现SO-CNN-BiGRU蛇群算法优化…

HarmonyOS学习路之方舟开发框架—学习ArkTS语言(状态管理 四)

Observed装饰器和ObjectLink装饰器&#xff1a;嵌套类对象属性变化 上文所述的装饰器仅能观察到第一层的变化&#xff0c;但是在实际应用开发中&#xff0c;应用会根据开发需要&#xff0c;封装自己的数据模型。对于多层嵌套的情况&#xff0c;比如二维数组&#xff0c;或者数…

1.1 VMware Workstation与Kali的安装和配置1

资源见专栏第一篇文章https://blog.csdn.net/algorithmyyds/article/details/132457258 安装VMware 不多加赘述&#xff0c;直接按顺序安装即可。 有以下需注意的地方&#xff1a; 1.建议选择增强型服务&#xff1b; 2.不要加入体验改进计划。是否开启提示更新看你的想法&…

MySQL数据的导入导出mysqldump、mysqlimport into outfile和load data

0、概述 MySQL数据的导入导出方案通常是配套的&#xff0c;例如&#xff1a; 方案一&#xff1a;使用mysqldump导出数据&#xff0c;再使用mysql客户端导入数据 方案二&#xff1a;使用SELECT INTO OUTFILE命令导出数据&#xff0c;再使用LOAD DATA或mysqlimport导入数据 方案…

Tokenview再度升级:全新Web3开发者APIs数据服务体验!

Tokenview发布全新版本的区块链APIs和数据服务平台&#xff0c;为开发者打造更强大、更便捷的开发体验&#xff01; 此次升级&#xff0c;我们整合了开发者使用习惯以及Tokenview产品优势。我们深知对于开发者来说&#xff0c;时间是非常宝贵的&#xff0c;因此我们努力提供一…

概率论与数理统计:第六章:数理统计

文章目录 Ch6. 数理统计(一) 总体与样本(二) 统计量 (5个)2.5个常用统计量3.矩的概念 (三) 抽样分布 (3个)0.上α分位点1.χ分布2.t分布3.F分布 (四) 抽样分布定理1.单个正态总体2.两个正态总体 Ch6. 数理统计 (一) 总体与样本 1.概念&#xff1a; (1)总体 (2)样本 简单随机…

利用“病毒制造机”实现脚本病毒的制造

一、脚本病毒的概念&#xff1a; 脚本病毒通常是 JavaScript 或 VBScript 等语言编写的恶意代码&#xff0c;一般广告性质&#xff0c;会修改 IE 首页、修改注册表等信息&#xff0c;对用户计算机造成破坏。 通过网页进行的传播的病毒较为典型&#xff0c;脚本病毒还会有如下前…