文章目录
- 一、LBPH算法
- 1.基本原理
- 2.实现步骤
- 3.代码实现
- 二、Eigenfaces算法
- 1.特点
- 2.代码实习
- 三、FisherFaces算法
- 1.算法原理
- 2.算法特点
- 3.代码实现
- 四、总结
人脸识别特征识别器是数字信息发展中的一种生物特征识别技术,其核心在于通过特定的算法和技术手段,从人脸图像中提取出具有区分性和稳定性的特征,用于后续的人脸识别和身份验证。Opencv提供了三种用于识别人脸的特征提取算法。分别是 LBPH 算法、EigenFaces 算法、FisherFaces 算法。以下是对人脸识别特征识别器的详细介绍:
一、LBPH算法
Local Binary Patterns Histograms(LBPH),即局部二值模式直方图,是一种用于图像识别和人脸识别的特征提取方法。以下是对LBPH的详细介绍:
1.基本原理
LBPH算法通过LBP算子描述图像局部纹理特征。LBP算子是一种用于描述图像局部纹理的算子,它将每个像素与其邻域内的像素进行比较,并将比较结果编码为二进制数。然后,通过统计这些二进制数的直方图来提取图像的局部纹理特征。在人脸识别中,LBPH算法将人脸图像划分为多个局部块,并计算每个块的LBP直方图,最后将这些直方图组合起来形成特征向量。
2.实现步骤
1、以每个像素为中心,判断与周围像素灰度值大小关系,对其进行二进制编码,从而获得整幅图像的LBP编码图像;
2、再将LBP图像分为个区域,获取每个区域的LBP编码直方图,继而得到整幅图像的LBP编码直方图。LBP特征与Haar特征很相似,都是图像的灰度变化特征。
特点:
通过比较不同人脸图像LBP编码直方图达到人脸识别的目的,其优点是不会受到光照、缩放、旋转和平移的影响。
3.代码实现
import cv2
import numpy as np
images=[]
images.append(cv2.imread('fmjj1.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('fmjj2.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('ss1.png', cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread('ss2.png', cv2.IMREAD_GRAYSCALE))
labels = [0, 0, 1, 1]
dic = {0: 'fmjj', 1: 'ss', -1: '无法识别'}
predict_image = cv2.imread('fmjj.png', cv2.IMREAD_GRAYSCALE)
recognizer = cv2.face.LBPHFaceRecognizer_create(threshold=80)
recognizer.train(images, np.array(labels))
label, confidence = recognizer.predict(predict_image)
print('这人是:', dic[label])
print('置信度:', confidence)
aa = cv2.putText(cv2.imread('fmjj.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('aa', aa)
cv2.waitKey(0)
cv2.destroyAllWindows()
本代码通过对四张照片进行读取,前两种为同一人图像,后两张为另一人图像,转为灰度图,并设置对应的标签,然后读取测试图片,通过使用LBPHFaceRecognizer来创建一个人脸识别器,并为其设置了一个阈值为80,然后使用测试图像和对应的标签来训练这个识别器。最后使用predict方法来对新的人脸图像进行识别。结果如下:
二、Eigenfaces算法
基于主成分分析(PCA)的算法,通过对人脸图像进行PCA处理,将高维的人脸数据转换为低维数据,提取出人脸的主要特征。
1.特点
- 降维效果好:Eigenfaces算法通过PCA降维,将高维的人脸图像数据转换为低维数据,同时保留了人脸的主要特征,有效降低了计算复杂度。
- 识别精度高:由于Eigenfaces算法提取了人脸图像的主要特征向量,因此在识别阶段能够较好地区分不同的人脸。
- 对光照和表情变化敏感:然而,Eigenfaces算法对光照和表情变化较为敏感,因为这些变化会改变人脸图像的主要特征向量,从而影响识别精度。
2.代码实习
import cv2
import numpy as np
def image_re(image):
a = cv2.imread(image, 0)
a = cv2.resize(a, (120, 180))
return a
images = []
a = image_re('fmjj1.png')
b = image_re('fmjj2.png')
c = image_re('ss1.png')
d = image_re('ss2.png')
images.append(a)
images.append(b)
images.append(c)
images.append(d)
labels = [0, 0, 1, 1]
pre_image = cv2.imread('fmjj.png', 0)
pre_image = cv2.resize(pre_image, (120, 180))
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels))
label, confidence = recognizer.predict(pre_image)
dic = {0: 'fmjj', 1: 'ss'}
print('这人是:', dic[label])
print("置信度:", confidence)
aa = cv2.putText(cv2.imread('fmjj.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('aa', aa)
cv2.waitKey(0)
cv2.destroyAllWindows()
代码基本与上述一致,这里我们使用EigenFaceRecognizer创建人脸识别器,然后再对其进行训练,预测得到最终结果。
三、FisherFaces算法
1.算法原理
Fisherfaces算法的核心思想是利用LDA算法对人脸特征进行降维,并通过计算投影系数,将原始图像投影到低维空间中。这样不仅可以大大减少计算量,提高识别速度,还能在一定程度上保持较高的识别准确率。LDA是一种经典的线性学习方法,它能够在降维的同时考虑类别信息,使得投影后的同类样本点尽可能靠近,异类样本点尽可能远离。
2.算法特点
- 考虑类别信息:与Eigenfaces算法相比,Fisherfaces算法在降维过程中考虑了类别信息,这使得投影后的特征更具区分性。
- 对光照和角度变化具有鲁棒性:由于Fisherfaces算法在提取特征时考虑了人脸的几何形状和纹理信息,因此它对光照和角度变化具有一定的鲁棒性。
- 计算复杂度较高:虽然Fisherfaces算法在识别阶段具有较快的速度,但由于在训练阶段需要计算类内和类间散度矩阵以及投影系数,因此计算复杂度相对较高。
3.代码实现
import cv2
import numpy as np
def image_re(imgae):
a = cv2.imread(imgae, 0)
a = cv2.resize(a, (120, 180))
return a
image = []
a = image_re('fmjj1.png')
b = image_re('fmjj2.png')
c = image_re('ss1.png')
d = image_re('ss2.png')
image.append(a)
image.append(b)
image.append(c)
image.append(d)
labels = [0, 0, 1, 1]
pre_image = image_re('fmjj.png')
recognizer = cv2.face.FisherFaceRecognizer_create()
recognizer.train(image, np.array(labels))
label, confidence = recognizer.predict(pre_image)
dic = {0: 'fmjj', 1: 'ss'}
print("这人是:", dic[label])
print('置信度:', confidence)
aa = cv2.putText(cv2.imread('fmjj.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('aa', aa)
cv2.waitKey(0)
cv2.destroyAllWindows()
四、总结
Eigenfaces、Fisherfaces和LBPH都是人脸识别中的经典算法,它们各自具有不同的特点和优势。Eigenfaces和Fisherfaces关注全局信息,而LBPH注重局部特征。在实际应用中,可以根据具体需求和场景选择合适的算法进行人脸识别。例如,在需要处理大规模数据集时,可以选择Eigenfaces算法;在需要注重分类性能时,可以选择Fisherfaces算法;在复杂环境下进行人脸识别时,可以选择LBPH算法。