Flink CDC同步mysql数据到doris

前置参考

flink快速安装:Flink入门-CSDN博客

doris快速安装:Apache Doris快速安装-CSDN博客

Flink CDC 是一个基于流的数据集成工具,旨在为用户提供一套功能更加全面的编程接口(API)。 该工具使得用户能够以 YAML 配置文件的形式,优雅地定义其 ETL(Extract, Transform, Load)流程,并协助用户自动化生成定制化的 Flink 算子并且提交 Flink 作业。 Flink CDC 在任务提交过程中进行了优化,并且增加了一些高级特性,如表结构变更自动同步(Schema Evolution)、数据转换(Data Transformation)、整库同步(Full Database Synchronization)以及 精确一次(Exactly-once)语义。

Flink CDC 深度集成并由 Apache Flink 驱动,提供以下核心功能:

  • ✅ 端到端的数据集成框架
  • ✅ 为数据集成的用户提供了易于构建作业的 API
  • ✅ 支持在 Source 和 Sink 中处理多个表
  • ✅ 整库同步
  • ✅具备表结构变更自动同步的能力(Schema Evolution),

如何使用 Flink CDC

Flink CDC 提供了基于 YAML 格式的用户 API,更适合于数据集成场景。以下是一个 YAML 文件的示例,它定义了一个数据管道(Pipeline),该Pipeline从 MySQL 捕获实时变更,并将它们同步到 Apache Doris:

source:
  type: mysql
  hostname: localhost
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: doris
  fenodes: 127.0.0.1:8030
  username: root
  password: ""
  table.create.properties.light_schema_change: true
  table.create.properties.replication_num: 1

pipeline:
  name: Sync MySQL Database to Doris
  parallelism: 2

通过使用 flink-cdc.sh 提交 YAML 文件,一个 Flink 作业将会被编译并部署到指定的 Flink 集群。 请参考 核心概念 以获取 Pipeline 支持的所有功能的完整文档说明。

Streaming ELT 同步 MySQL 到 Doris

这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 到 Doris 的 Streaming ELT 作业,包含整库同步、表结构变更同步和分库分表同步的功能。 本教程的演示都将在 Flink CDC CLI 中进行,无需一行 Java/Scala 代码,也无需安装 IDE。

准备阶段

准备一台已经安装了 Docker 的 Linux 或者 MacOS 电脑。

  1. 下载 Flink 1.18.0,解压后得到 flink-1.18.0 目录。 使用下面的命令跳转至 Flink 目录下,并且设置 FLINK_HOME 为 flink-1.18.0 所在目录。

    cd flink-1.18.0
    
  2. 通过在 conf/flink-conf.yaml 配置文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

    execution.checkpointing.interval: 3000
    
  3. 使用下面的命令启动 Flink 集群。

    ./bin/start-cluster.sh

启动成功的话,可以在 http://localhost:8081/访问到 Flink Web UI,如下所示:

Flink UI

多次执行 start-cluster.sh 可以拉起多个 TaskManager。

准备 Docker 环境

接下来的教程将以 docker-compose 的方式准备所需要的组件。

  1. 宿主机配置 由于 Doris 的运行需要内存映射支持,需在宿主机执行如下命令:

    sysctl -w vm.max_map_count=2000000
    

MacOS 由于内部实现容器的方式不同,在部署时宿主机直接修改max_map_count值可能无法成功,需要先创建以下容器:

docker run -it --privileged --pid=host --name=change_count debian nsenter -t 1 -m -u -n -i sh

容器创建成功执行以下命令:

sysctl -w vm.max_map_count=2000000

然后 exit 退出,创建 Doris Docker 集群。

  1. docker 镜像启动 使用下面的内容创建一个 docker-compose.yml 文件:

    version: '2.1'
    services:
      doris:
        image: yagagagaga/doris-standalone
        ports:
          - "8030:8030"
          - "8040:8040"
          - "9030:9030"
      mysql:
        image: debezium/example-mysql:1.1
        ports:
          - "3306:3306"
        environment:
          - MYSQL_ROOT_PASSWORD=123456
          - MYSQL_USER=mysqluser
          - MYSQL_PASSWORD=mysqlpw
    

该 Docker Compose 中包含的容器有:

  • MySQL: 包含商品信息的数据库 app_db
  • Doris: 存储从 MySQL 中根据规则映射过来的结果表

在 docker-compose.yml 所在目录下执行下面的命令来启动本教程需要的组件:

docker-compose up -d

该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问http://localhost:8030/ 来查看 Doris 是否运行正常。

在 MySQL 数据库中准备数据
  1. 进入 MySQL 容器

    docker-compose exec mysql mysql -uroot -p123456
    
  2. 创建数据库 app_db 和表 orders,products,shipments,并插入数据

    -- 创建数据库
    CREATE DATABASE app_db;
    
    USE app_db;
    
    -- 创建 orders 表
    CREATE TABLE `orders` (
    `id` INT NOT NULL,
    `price` DECIMAL(10,2) NOT NULL,
    PRIMARY KEY (`id`)
    );
    
    -- 插入数据
    INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
    INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);
    
    -- 创建 shipments 表
    CREATE TABLE `shipments` (
    `id` INT NOT NULL,
    `city` VARCHAR(255) NOT NULL,
    PRIMARY KEY (`id`)
    );
    
    -- 插入数据
    INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
    INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');
    
    -- 创建 products 表
    CREATE TABLE `products` (
    `id` INT NOT NULL,
    `product` VARCHAR(255) NOT NULL,
    PRIMARY KEY (`id`)
    );
    
    -- 插入数据
    INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
    INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
    INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');
    
Create database in Doris

Doris 暂时不支持自动创建数据库,需要先创建写入表对应的数据库。

  1. 进入 Doris Web UI。
    http://localhost:8030/
    默认的用户名为 root,默认密码为空。

    Doris UI

  2. 通过 Web UI 创建 app_db 数据库

    create database app_db;
    

    Doris create table

通过 FlinkCDC cli 提交任务

  1. 下载下面列出的二进制压缩包,并解压得到目录 flink cdc-3.0.0 '
    flink-cdc-3.0.0-bin.tar.gz. flink-cdc-3.0.0 下会包含 binliblogconf 四个目录。

  2. 下载下面列出的 connector 包,并且移动到 lib 目录下 下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地基于 master 或 release- 分支编译.

    • MySQL pipeline connector 3.0.0
    • Apache Doris pipeline connector 3.0.0

3.编写任务配置 yaml 文件 下面给出了一个整库同步的示例文件 mysql-to-doris.yaml

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:
  type: mysql
  hostname: localhost
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: doris
  fenodes: 127.0.0.1:8030
  username: root
  password: ""
  table.create.properties.light_schema_change: true
  table.create.properties.replication_num: 1

pipeline:
  name: Sync MySQL Database to Doris
  parallelism: 2

其中: source 中的 tables: app_db.\.* 通过正则匹配同步 app_db 下的所有表。 sink 添加 table.create.properties.replication_num 参数是由于 Docker 镜像中只有一个 Doris BE 节点。

  1. 最后,通过命令行提交任务到 Flink Standalone cluster
    bash bin/flink-cdc.sh mysql-to-doris.yaml
    

提交成功后,返回信息如:

Pipeline has been submitted to cluster.
Job ID: ae30f4580f1918bebf16752d4963dc54
Job Description: Sync MySQL Database to Doris

在 Flink Web UI,可以看到一个名为 Sync MySQL Database to Doris 的任务正在运行。

MySQL-to-Doris

打开 Doris 的 Web UI,可以看到数据表已经被创建出来,数据能成功写入。

Doris display data

同步变更

进入 MySQL 容器

 docker-compose exec mysql mysql -uroot -p123456

接下来,修改 MySQL 数据库中表的数据,Doris 中显示的订单数据也将实时更新:

  1. 在 MySQL 的 orders 表中插入一条数据

    INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);
    
  2. 在 MySQL 的 orders 表中增加一个字段

    ALTER TABLE app_db.orders ADD amount varchar(100) NULL;
    
  3. 在 MySQL 的 orders 表中更新一条数据

    UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;
    
  4. 在 MySQL 的 orders 表中删除一条数据

    DELETE FROM app_db.orders WHERE id=2;
    

每执行一步就刷新一次 Doris Web UI,可以看到 Doris 中显示的 orders 数据将实时更新,如下所示:

Doris display result

同样的,去修改 shipmentsproducts 表,也能在 Doris 中实时看到同步变更的结果。

Route the changes

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。 下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Doris
################################################################################
source:
   type: mysql
   hostname: localhost
   port: 3306
   username: root
   password: 123456
   tables: app_db.\.*
   server-id: 5400-5404
   server-time-zone: UTC

sink:
   type: doris
   fenodes: 127.0.0.1:8030
   benodes: 127.0.0.1:8040
   username: root
   password: ""
   table.create.properties.light_schema_change: true
   table.create.properties.replication_num: 1

route:
   - source-table: app_db.orders
     sink-table: ods_db.ods_orders
   - source-table: app_db.shipments
     sink-table: ods_db.ods_shipments
   - source-table: app_db.products
     sink-table: ods_db.ods_products

pipeline:
   name: Sync MySQL Database to Doris
   parallelism: 2

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 ods_db.ods_orders 中。从而实现数据库迁移的功能。 特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:
  - source-table: app_db.order\.*
    sink-table: ods_db.ods_orders

这样,就可以将诸如 app_db.order01app_db.order02app_db.order03 的表汇总到 ods_db.ods_orders 中。注意,目前还不支持多表中存在相同主键数据的场景,将在后续版本支持。

环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

在 Flink 所在目录 flink-1.18.0 下执行如下命令停止 Flink 集群:

./bin/stop-cluster.sh

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/891893.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI测试之 TestGPT

如今最火热的技术莫非OpenAI的ChatGPT莫属,AI技术也在很多方面得到广泛应用。今天我们要介绍的TestGPT就是一个软件测试领域中当红的应用。 TestGPT是什么? TestGPT是一家总部位于以色列特拉维夫的初创公司 CodiumAI Ltd.,发布的一款用于测…

hadoop集群搭建-克隆虚拟机,安装jdk,hadoop

2.2 hadoop运行环境的搭建 2.2.1 环境准备 1)安装模板虚拟机,IP地址 192.168.10.100,主机名hadoop100,内存41GB,硬盘50GB 2)虚拟机配置 首先测试虚拟机是否可以正常上网,测试方法ping www.b…

配置环境windows-IIS默认拒绝put,delete的解决方案

方法一&#xff1a; <system.webServer> </system.webServer> 方法二&#xff1a;移除网站“模块”中的"webdavmodule"

【芯智雲城】Boradcom(博通) 多领域技术解决方案介绍

Broadcom Inc. 是一家全球领先的技术企业&#xff0c;业务范围囊括多种半导体、企业用软件和安全解决方案的设计、开发和供应。Broadcom 的类别领先产品组合在许多重要的市场中发挥作用&#xff0c;其中包括云、数据中心、网络、带宽、无线技术、存储&#xff0c;以及工业和企业…

元数据 - iXML

在专业的音频和视频制作中&#xff0c;元数据的准确传递对于后期制作和编辑至关重要。iXML&#xff08;iXML Metadata&#xff09;是一种开放的、可扩展的元数据规范&#xff0c;旨在在录音设备和数字音频工作站&#xff08;DAW&#xff09;之间传递详细的录音信息。 一、什么是…

单目相机和双目相机定位

1、单目相机 1.1模型 单目相机成像模型为小孔成像&#xff0c;涉及的坐标系包括世界坐标系、相机坐标系、图像坐标系以及像素坐标系。坐标系之间的转换关系如下&#xff1a; 1.2参数求解 张正友相机标定方法、设定世界坐标系精确求解 2、双目相机 2.1、模型 一般双目立体视…

低代码策略量化平台更新|大模型agents生态的一些思考

原创内容第680篇&#xff0c;专注量化投资、个人成长与财富自由。 用户判断星球会员后&#xff0c;会获得10个积分&#xff1a; 当其他用户发布策略&#xff0c;设置为下载需要积分时&#xff1a; 下载策略会扣除相应的积分&#xff0c;扣除的积分属于策略所有者。 策略运行结…

大型企业软件开发是什么样子的? - Web Dev Cody

引用自大型企业软件开发是什么样子的&#xff1f; - Web Dev Cody_哔哩哔哩_bilibili 一般来说 学技术的时候 我们会关注 开发语言特性 &#xff0c;各种高级语法糖&#xff0c;底层技术 但是很少有关注到企业里面的开发流程&#xff0c;本着以终为始&#xff08;以就业为导向…

python源码:目录文件大小排序

前言 这个代码并不难懂&#xff0c;但是在一定情况下&#xff0c;能够为你的自动化脚本提供便利。 该代码主要是&#xff1a;根据大小&#xff0c;对某个目录的下级子文件和目录进行排序。 代码 效果 代码 import osdef get_dir_size(directory):"""计算给定…

【Linux线程】Linux线程编程基础:概念、创建与管理

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;Linux “ 登神长阶 ” &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀Linux多线程 &#x1f4d2;1. 线程概念&#x1f4dc;2. 进程VS线程&#x1f4da;3. 线程控制…

SpringBoot实现接口:统一返回值、全局异常处理、Swagger接口文档

在 Spring Boot 应用中实现统一返回值和全局异常处理可以带来多方面的好处&#xff0c;这些好处不仅提升了代码的可读性和可维护性&#xff0c;还增强了应用的健壮性和用户体验。以下是一些具体的好处&#xff1a; 代码一致性&#xff1a; 通过定义统一的返回值格式&#xff…

【从零开始的LeetCode-算法】3194. 最小元素和最大元素的最小平均值

你有一个初始为空的浮点数数组 averages。另给你一个包含 n 个整数的数组 nums&#xff0c;其中 n 为偶数。 你需要重复以下步骤 n / 2 次&#xff1a; 从 nums 中移除 最小 的元素 minElement 和 最大 的元素 maxElement。将 (minElement maxElement) / 2 加入到 averages …

Apache Linkis + OceanBase:如何提升数据分析效率

计算中间件 Apache Linkis 构建了一个计算中间件层&#xff0c;以实现上层应用程序和底层数据引擎之间的连接、治理和编排。目前&#xff0c;已经支持通过数据源的功能&#xff0c;实现用户通过Linkis 对接并使用 OceanBase数据库。 本文详细阐述了在 Apache Linkis v1.3.2中&a…

零基础学习网络安全,注意这几个高效学习方法,零基础入门到精通,收藏这篇就够了

零基础学习网络安全&#xff0c;注意查收这些有效学习方法 ‍零基础怎么学网络安全?网络安全学习办法有很多&#xff0c;又高效得&#xff0c;也有低效得&#xff0c;还有无效得。今天和我一起来看看网络安全的有效学习秘籍。 ‍ 零基础从什么开始学网络安全&#xff0c;大…

七大经典排序算法优化:插入排序、希尔排序、选择排序、冒泡排序、堆排序、快速排序、归并排序代码详解

目录 排序算法 1.插入排序 2.希尔排序 3.选择排序 4.冒泡排序 5.堆排序 6.快速排序 7.归并排序 排序算法 排序算法是一类用于将数据按照特定顺序&#xff08;如升序或降序&#xff09;排列的算法&#xff0c;常用于优化数据检索和处理。常见的排序算法包括冒泡排序、选…

【Deepin】钉钉下载文件图片闪退问题解决(临时方式)

环境 故障 下载文件、图片等闪退 解决 cd /opt/apps/com.alibabainc.dingtalk/files/7.6.0-Release.4091801/sudo rm -rf ./libstdc.so.6*注&#xff1a; 7.6.0-Release.4091801可能会略有不同&#xff0c;根据实际情况调整保险起见&#xff0c;操作第二行删除命令时&#…

第二十七篇:传输层讲解,TCP系列一

一、传输层的功能 ① 分割与重组数据 传输层也要做数据分割&#xff0c;所以必然也需要做数据重组。 ② 按端口号寻址 IP只能定位数据哪台主机&#xff0c;无法判断数据报文应该交给哪个应用&#xff0c;传输层给每个应用都设置了一个编号&#xff0c;这个编号就是端口&…

Wails 学习笔记:Wails核心思想理解

文章目录 1. Wails 的核心思想2. 工作流程2.1 前端渲染2.2 后端逻辑2.3 前后端通信2.4 应用打包与分发 3. Wails 主要组件3.1 WebView3.2 事件与数据绑定3.3 窗口管理 4. Wails 的优点5. Wails 的使用场景6. 启动函数Runwails.Run() 的主要功能wails.Run() 的参数&#xff1a;w…

【C++】STL篇 string类(使用)

string的学习会分为两个大步骤&#xff0c;第一步就是会使用string&#xff0c;第二部是模拟实现string。这篇文章我们介绍一下string类以及它的使用。string大概有一百多个接口&#xff0c;我们需要重点掌握的就十几二十个。string其实就是字符串&#xff0c;严格来说string类…

STM32传感器模块编程实践(八) HX711压力传感器称重模块简介及驱动源码

文章目录 一.概要二.HX711主要技术指标三.HX711模块参考原理图四.模块接线说明五.模块工作原理介绍六.模块通讯协议介绍七.STM32单片机与HX711模块实现重量测量实验1.硬件准备2.软件工程3.软件主要代码4.实验效果 八.小结 一.概要 电子秤是将检测与转换技术、计算机技术、信息…