基于LSTM-Transformer混合模型实现股票价格多变量时序预测(PyTorch版)

股票交易价格
前言

系列专栏:【深度学习:算法项目实战】✨︎
涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。

在金融市场的分析中,股票价格预测一直是一个充满挑战且备受关注的领域。传统的时序预测方法,如ARIMA、LSTM等,虽然在一定程度上能够捕捉到时间序列数据的动态特性,但在处理复杂的非线性关系和长期依赖时往往力不从心。近年来,随着深度学习技术的快速发展,尤其是Transformer模型的出现,为时序预测问题提供了新的解决思路。

Transformer模型通过其独特的自注意力机制,能够有效地捕捉到时间序列数据中的长期依赖关系,这在股票价格预测等金融时序预测任务中显得尤为重要。然而,Transformer模型在处理局部依赖和时序信息方面可能不如LSTM等循环神经网络模型。因此,结合LSTM和Transformer的混合模型应运而生,旨在充分利用LSTM在处理时序信息和短期依赖方面的优势,以及Transformer在捕捉长期依赖关系方面的能力。

本文将介绍一种基于LSTM-Transformer混合模型的股票价格多变量时序预测方法,该方法结合了LSTM和Transformer的优点,旨在提高股票价格预测的准确性。我们将使用PyTorch框架来实现该模型,并通过实验验证其在股票价格预测任务中的有效性。希望通过本文的探讨,能够为金融市场的时序预测问题提供一些新的思路和解决方案。

1. 数据集介绍

AAPL股票数据集,是苹果公司(Apple Inc.)在股票市场上的交易数据集合。这些数据集包含了苹果公司的股票价格、交易量、市值等关键财务指标,是金融分析、量化交易、时间序列预测等领域的重要数据源。投资者可以通过分析AAPL股票数据集来评估苹果公司的基本面和市场表现,从而做出更为明智的投资决策。


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, \
                            mean_absolute_percentage_error, \
                            mean_squared_error, root_mean_squared_error, \
                            r2_score

import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset, Dataset
from torchinfo import summary

np.random.seed(0)
torch.manual_seed(0)

2. 数据预处理

使用 pandas.to_datetime 函数将标量、数组、Series 或 DataFrame/dict-like 转换为时间数据类型。

data = pd.read_csv('AAPL.csv')
print(type(data['Close'].iloc[0]),type(data['Date'].iloc[0]))

# Let's convert the data type of timestamp column to datatime format
data['Date'] = pd.to_datetime(data['Date'])
print(type(data['Close'].iloc[0]),type(data['Date'].iloc[0]))

# Selecting subset
cond_1 = data['Date'] >= '2021-04-23 00:00:00'
cond_2 = data['Date'] <= '2024-04-23 00:00:00'
data = data[cond_1 & cond_2].set_index('Date')
print(data.shape)
<class 'numpy.float64'> <class 'str'>
<class 'numpy.float64'> <class 'pandas._libs.tslibs.timestamps.Timestamp'>
(755, 6)

3. 数据可视化

通过 matplotlib 绘制收盘价格,收盘价是股票在正常交易日的最后交易价格,是投资者跟踪其长期表现的标准基准。通过图形可以快速识别股价的趋势走向。

# plt.style.available
plt.style.use('_mpl-gallery')
plt.figure(figsize=(18,6))
plt.title('Close Price History')
plt.plot(AAPL['Close'],label='AAPL')
plt.ylabel('Close Price USD ($)', fontsize=18)
plt.legend()
plt.show()

收盘价格

4. 特征工程

4.1 特征缩放(归一化)

MinMaxScaler() 函数是 scikit-learn 库中预处理模块的一个非常实用的工具,用于特征缩放,特别是将特征值缩放到一个指定的范围内,通常是[0, 1]。这种缩放方法对于许多机器学习算法来说是非常有用的,因为它可以帮助改善算法的收敛速度和性能,特别是在特征尺度差异较大的情况下。

# 使用选定的特征来训练模型
features = data.drop(['Adj Close', 'Volume'], axis=1)
target = data['Adj Close'].values.reshape(-1, 1)
# 创建 MinMaxScaler实例,对特征进行拟合和变换,生成NumPy数组
scaler = MinMaxScaler()
features_scaled = scaler.fit_transform(features)
target_scaled = scaler.fit_transform(target)
print(features_scaled.shape, target_scaled.shape)

4.2 构建时间序列数据

我们创建一个时间序列数据,时间步 time_steps 假设设置为30

time_steps = 30
X_list = []
y_list = []

for i in range(len(features_scaled) - time_steps):
    X_list.append(features_scaled[i:i+time_steps])
    y_list.append(target_scaled[i+time_steps])

X = np.array(X_list) # [samples, time_steps, num_features]
y = np.array(y_list) # [target]

上述代码的目的是进行时间序列数据的预处理,将原始的时间序列数据转换为适合机器学习模型输入的格式。具体来说,它通过滑动窗口的方式将时间序列数据分割成多个样本,每个样本包含一定数量的时间步 time_steps 的特征数据以及对应的一个目标值。time_steps:表示每个样本中包含的时间步数。它决定了模型在预测时考虑的历史数据长度。X_list:用于存储分割后的特征数据样本的列表。y_list:用于存储每个特征数据样本对应的目标值的列表。

X_list.append(features_scaled[i:i + time_steps]):将从当前位置 i 开始,长度为 time_steps 的特征数据切片添加到 X_list 中。这样就得到了一系列连续的时间步的特征数据样本。
y_list.append(target_scaled[i + time_steps]):将当前位置 i + time_steps 的目标值添加到 y_list 中。这个目标值对应于当前特征数据样本之后的一个时间步的目标值。

samples, time_steps, num_features = X.shape  # 赋值

4.3 数据集划分

train_test_split 函数将数组或矩阵随机分成训练子集和测试子集。

X_train, X_valid,\
    y_train, y_valid = train_test_split(X, y, 
                                        test_size=0.2, 
                                        random_state=45,
                                        shuffle=False)
print(X_train.shape, X_valid.shape, y_train.shape, y_valid.shape)

以上代码中 random_state=45 设置了随机种子,以确保每次运行代码时分割结果的一致性。shuffle=False 表示在分割数据时不进行随机打乱。如果设置为True(默认值),则会在分割之前对数据进行随机打乱,这样可以增加数据的随机性,但时间序列数据具有连续性,所以设置为False

4.4 数据加载器

# 将 NumPy数组转换为 tensor张量
X_train_tensor = torch.from_numpy(X_train).type(torch.Tensor)
X_valid_tensor = torch.from_numpy(X_valid).type(torch.Tensor)
y_train_tensor = torch.from_numpy(y_train).type(torch.Tensor).view(-1, 1)
y_valid_tensor = torch.from_numpy(y_valid).type(torch.Tensor).view(-1, 1)

print(X_train_tensor.shape, X_valid_tensor.shape, y_train_tensor.shape, y_valid_tensor.shape)

以上代码通过 train_test_split 划分得到的训练集和验证集中的特征数据 X_trainX_valid 以及标签数据 y_trainy_validnumpy 数组转换为 PyTorch 的张量(tensor)类型。.type(torch.Tensor) 确保张量的数据类型为标准的 torch.Tensor 类型,.view(-1, 1) 对张量进行维度调整

class DataHandler(Dataset):
    def __init__(self, X_train_tensor, y_train_tensor, X_valid_tensor, y_valid_tensor):
        self.X_train_tensor = X_train_tensor
        self.y_train_tensor = y_train_tensor
        self.X_valid_tensor = X_valid_tensor
        self.y_valid_tensor = y_valid_tensor
        
    def __len__(self):
        return len(self.X_train_tensor)

    def __getitem__(self, idx):
        sample = self.X_train_tensor[idx]
        labels = self.y_train_tensor[idx]
        return sample, labels
        
    def train_loader(self):
        train_dataset = TensorDataset(self.X_train_tensor, self.y_train_tensor)
        return DataLoader(train_dataset, batch_size=32, shuffle=True)

    def valid_loader(self):
        valid_dataset = TensorDataset(self.X_valid_tensor, self.y_valid_tensor)
        return DataLoader(valid_dataset, batch_size=32, shuffle=False)

在上述代码中,定义了一个名为 DataHandler 的类,它继承自 torch.utils.data.Dataset
__init__ 方法用于接收数据和标签。__len__ 方法返回数据集的长度。__getitem__ 方法根据给定的索引 idx 返回相应的数据样本和标签。

data_handler = DataHandler(X_train_tensor, y_train_tensor, X_valid_tensor, y_valid_tensor)
train_loader = data_handler.train_loader()
valid_loader = data_handler.valid_loader()

在上述代码中,创建了一个数据处理对象 data_handler,并通过该对象生成训练集数据加载器 train_loader 和验证集数据加载器valid_loader。通过这种方式,可以方便地管理和加载训练集和验证集数据,为深度学习模型的训练和评估提供了数据支持。

5. 构建时序模型(TSF)

5.1 构建LSTM-Transformer模型

class LSTM_Transformer(nn.Module):
    def __init__(self, input_dim, hidden_dim, lstm_layers, transformer_heads, transformer_layers, output_dim, dropout=0.5):
        super(LSTM_Transformer, self).__init__()
        # LSTM 层
        self.lstm = nn.LSTM(input_dim, hidden_dim, lstm_layers, batch_first=True)
        # Transformer 编码器层
        transformer_encoder_layer = nn.TransformerEncoderLayer(d_model=hidden_dim, nhead=transformer_heads, dim_feedforward=hidden_dim * 2, dropout=dropout, batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(transformer_encoder_layer, num_layers=transformer_layers)
        # 输出层
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        # LSTM 输出
        lstm_out, _ = self.lstm(x)
        # Transformer 输入
        transformer_input = lstm_out
        # Transformer 输出
        transformer_out = self.transformer_encoder(transformer_input)
        # 预测输出
        output = self.fc(transformer_out[:, -1, :])
        return output

5.2 实例化模型、损失函数和优化器

input_dim = num_features  # 输入特征维度
hidden_dim = 64  # LSTM 和 Transformer 的隐藏维度
lstm_layers = 1  # LSTM 层数
transformer_heads = 8  # Transformer 头数
transformer_layers = 1  # Transformer 层数
output_dim = 1  # 输出维度
model = LSTM_Transformer(input_dim, hidden_dim, lstm_layers, transformer_heads, transformer_layers, output_dim)
criterion_mse = nn.MSELoss()  # 定义均方误差损失函数
criterion_mae = nn.L1Loss()  # 定义平均绝对误差损失
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001) # 定义优化器
  1. criterion_mse = nn.MSELoss()
    使用 PyTorch 中的 nn.MSELoss 定义了均方误差(Mean Squared Error)损失函数。均方误差是回归问题中常用的损失函数,它计算预测值与真实值之间的平方差的平均值。在时序预测中,MSE 损失可以衡量模型预测值与实际值之间的差异程度。
  2. criterion_mae = nn.L1Loss()
    定义了平均绝对误差(Mean Absolute Error)损失函数。平均绝对误差计算预测值与真实值之间的绝对差值的平均值。与 MSE 损失相比,MAE 损失对异常值不那么敏感。
  3. optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
    • 使用 Adam 优化器来优化模型的参数。Adam 是一种自适应学习率的优化算法,结合了动量和 RMSProp 的优点,能够在训练过程中自动调整学习率,加快收敛速度。
    • model.parameters() 表示要优化的模型参数,lr=0.0001是学习率,控制每次参数更新的步长。学习率的选择对于模型的训练效果很重要,过小的学习率可能导致收敛速度过慢,而过大的学习率可能导致模型无法收敛或振荡。

5.3 模型概要

# batch_size, seq_len(time_steps), input_size(in_channels)
summary(model, (32, time_steps, num_features)) 
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
LSTM_Transformer                              [32, 1]                   --
├─LSTM: 1-1                                   [32, 30, 64]              17,920
├─TransformerEncoder: 1-2                     [32, 30, 64]              --
│    └─ModuleList: 2-1                        --                        --
│    │    └─TransformerEncoderLayer: 3-1      [32, 30, 64]              33,472
├─Linear: 1-3                                 [32, 1]                   65
===============================================================================================
Total params: 51,457
Trainable params: 51,457
Non-trainable params: 0
Total mult-adds (Units.MEGABYTES): 17.21
===============================================================================================
Input size (MB): 0.02
Forward/backward pass size (MB): 0.49
Params size (MB): 0.07
Estimated Total Size (MB): 0.58
===============================================================================================

6. 模型训练与可视化

6.1 定义训练与评估函数

在模型训练之前,我们需先定义 train 函数来执行模型训练过程

def train(model, iterator, optimizer):
    epoch_loss_mse = 0
    epoch_loss_mae = 0

    model.train()  # 确保模型处于训练模式
    for batch in iterator:
        optimizer.zero_grad()  # 清空梯度
        inputs, targets = batch  # 获取输入和目标值
        outputs = model(inputs)  # 前向传播

        loss_mse = criterion_mse(outputs, targets)  # 计算损失
        loss_mae = criterion_mae(outputs, targets)

        combined_loss = loss_mse + loss_mae  # 可以根据需要调整两者的权重

        combined_loss.backward()
        optimizer.step()

        epoch_loss_mse += loss_mse.item()  # 累计损失
        epoch_loss_mae += loss_mae.item()

    average_loss_mse = epoch_loss_mse / len(iterator)  # 计算平均损失
    average_loss_mae = epoch_loss_mae / len(iterator)

    return average_loss_mse, average_loss_mae

上述代码定义了一个名为 train 的函数,用于训练给定的模型。它接收模型、数据迭代器、优化器作为参数,并返回训练过程中的平均损失。

def evaluate(model, iterator):
    epoch_loss_mse = 0
    epoch_loss_mae = 0

    model.eval()  # 将模型设置为评估模式,例如关闭 Dropout 等
    with torch.no_grad():  # 不需要计算梯度
        for batch in iterator:
            inputs, targets = batch
            outputs = model(inputs)  # 前向传播

            loss_mse = criterion_mse(outputs, targets)  # 计算损失
            loss_mae = criterion_mae(outputs, targets)

            epoch_loss_mse += loss_mse.item()  # 累计损失
            epoch_loss_mae += loss_mae.item()

    return epoch_loss_mse / len(iterator), epoch_loss_mae / len(iterator)

上述代码定义了一个名为 evaluate 的函数,用于评估给定模型在给定数据迭代器上的性能。它接收模型、数据迭代器作为参数,并返回评估过程中的平均损失。这个函数通常在模型训练的过程中定期被调用,以监控模型在验证集或测试集上的性能。通过评估模型的性能,可以了解模型的泛化能力和训练的进展情况。

epoch = 1000
train_mselosses = []
valid_mselosses = []
train_maelosses = []
valid_maelosses = []

for epoch in range(epoch):
    train_loss_mse, train_loss_mae = train(model, train_loader, optimizer)
    valid_loss_mse, valid_loss_mae = evaluate(model, valid_loader)
    
    train_mselosses.append(train_loss_mse)
    valid_mselosses.append(valid_loss_mse)
    train_maelosses.append(train_loss_mae)
    valid_maelosses.append(valid_loss_mae)
    
    print(f'Epoch: {epoch+1:02}, Train MSELoss: {train_loss_mse:.5f}, Train MAELoss: {train_loss_mae:.3f}, Val. MSELoss: {valid_loss_mse:.5f}, Val. MAELoss: {valid_loss_mae:.3f}')

上述代码主要进行了模型的训练和评估过程,并记录了每个 epoch 的训练和验证集上的均方误差损失(MSE Loss)和平均绝对误差损失(MAE Loss)

Epoch: 1000, Train MSELoss: 0.00149, Train MAELoss: 0.029, Val. MSELoss: 0.00093, Val. MAELoss: 0.023

6.2 绘制训练与验证损失曲线

# 绘制 MSE损失图
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(train_mselosses, label='Train MSELoss')
plt.plot(valid_mselosses, label='Validation MSELoss')
plt.xlabel('Epoch')
plt.ylabel('MSELoss')
plt.title('Train and Validation MSELoss')
plt.legend()
plt.grid(True)

# 绘制 MAE损失图
plt.subplot(1, 2, 2)
plt.plot(train_maelosses, label='Train MAELoss')
plt.plot(valid_maelosses, label='Validation MAELoss')
plt.xlabel('Epoch')
plt.ylabel('MAELoss')
plt.title('Train and Validation MAELoss')
plt.legend()
plt.grid(True)

plt.show()

损失曲线

7. 模型评估与可视化

7.1 构建预测函数

定义预测函数 prediction 方便调用

# 定义 prediction函数
def prediction(model, iterator): 
    all_targets = []
    all_predictions = []

    model.eval()
    with torch.no_grad():
        for batch in iterator:
            inputs, targets = batch
            predictions = model(inputs)
            
            all_targets.extend(targets.numpy())
            all_predictions.extend(predictions.numpy())
    return all_targets, all_predictions

这段代码定义了一个名为 prediction 的函数,其主要目的是使用给定的模型对输入数据进行预测,并收集所有的目标值和预测值。

7.2 验证集预测

# 模型预测
targets, predictions = prediction(model, valid_loader)
# 反归一化
denormalized_targets = scaler.inverse_transform(targets)
denormalized_predictions = scaler.inverse_transform(predictions)

targets 是经过归一化处理后的目标值数组,predictions 是经过归一化处理后的预测值数组。scalerMinMaxScaler() 归一化类的实例,inverse_transform 方法会将归一化后的数组还原为原始数据的尺度,即对预测值进行反归一化操作。

# Visualize the data
plt.figure(figsize=(12,6))
plt.style.use('_mpl-gallery')
plt.title('Comparison of validation set prediction results')
plt.plot(denormalized_targets, color='blue',label='Actual Value')
plt.plot(denormalized_predictions, color='orange', label='Valid Value')
plt.legend()
plt.show()

验证集股票价格

7.3 回归拟合图

使用 regplot() 函数绘制数据图并拟合线性回归模型。

plt.figure(figsize=(5, 5), dpi=100)
sns.regplot(x=denormalized_targets, y=denormalized_predictions, scatter=True, marker="*", color='orange',line_kws={'color': 'red'})
plt.show()

回归拟合图

7.4 评估指标

以下代码使用了一些常见的评估指标:平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)来衡量模型预测的性能。这里我们将通过调用 sklearn.metrics 模块中的 mean_absolute_error mean_absolute_percentage_error mean_squared_error root_mean_squared_error r2_score 函数来对模型的预测效果进行评估。

mae = mean_absolute_error(targets, predictions)
print(f"MAE: {mae:.4f}")

mape = mean_absolute_percentage_error(targets, predictions)
print(f"MAPE: {mape * 100:.4f}%")

mse = mean_squared_error(targets, predictions)
print(f"MSE: {mse:.4f}")

rmse = root_mean_squared_error(targets, predictions)
print(f"RMSE: {rmse:.4f}")

r2 = r2_score(targets, predictions)
print(f"R²: {r2:.4f}")
MAE: 0.0229
MAPE: 3.0055%
MSE: 0.0009
RMSE: 0.0302: 0.9346

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/890836.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何替换OCP节点(一):使用oat | OceanBase应用实践

前言&#xff1a; OceanBase Cloud Platform&#xff08;简称OCP&#xff09;&#xff0c;是 OceanBase数据库的专属企业级数据库管理平台。 在实际生产环境中&#xff0c;OCP的安装通常是第一步&#xff0c;先搭建OCP平台&#xff0c;进而依赖OCP来创建、管理和监控我们的生…

Spark全网最全总结

Spark 产生之前&#xff0c;已经有 MapReduce 这类非常成熟的计算系统存在了&#xff0c;并提供 了高层次的 API(map/reduce)&#xff0c;把计算运行在集群中并提供容错能力&#xff0c;从而实现 分布式计算。 虽然 MapReduce 提供了对数据访问和计算的抽象&#xff0c…

八卦GPT-5的一切

这篇超长文章——既是评论&#xff0c;也是探索——关于GPT-5 对最受期待的下一代 AI 模型的深入分析 但它不仅仅是关于GPT-5。 • 它涉及我们对下一代AI模型的期望。 • 它关于即将出现的令人兴奋的新功能&#xff08;如推理和代理&#xff09;。它不仅讨论GPT-5技术本身&…

Web安全 - 跨站点请求伪造CSRF(Cross Site Request Forgery)

文章目录 OWASP 2023 TOP 10CSRF 导图CSRF的基本概念CSRF的工作原理常见CSRF攻击模式CSRF防御策略补充建议应用场景实战防御策略选择1. CSRF Token&#xff08;首选&#xff09;2. SameSite Cookie属性3. 验证Referer和Origin4. 多因素认证 实现方案CSRF Token实现SameSite Coo…

SQL分类中的DQL

DQL&#xff08;Data Query Language&#xff09;:数据查询语言&#xff0c;用来查询数据库中表的记录。 一、DQL语法 编写顺序 执行顺序 SELECT 字段列表 5 FROM 表名列表 1 WHERE 条件列表 2 GROUP BY 分组字段列表 3 HAVING 分组后条件列表 4 ORDER BY 排…

Golang | Leetcode Golang题解之第470题用Rand7()实现Rand10()

题目&#xff1a; 题解&#xff1a; func rand10() int {for {a : rand7()b : rand7()idx : (a-1)*7 bif idx < 40 {return 1 (idx-1)%10}a idx - 40b rand7()// get uniform dist from 1 - 63idx (a-1)*7 bif idx < 60 {return 1 (idx-1)%10}a idx - 60b rand…

Mac 电脑安装redis

1、首先检查电脑是否安装 brew 命令&#xff1a; #打开Mac自带的终端&#xff0c;输入下面命令 brew --version如下图&#xff0c;可以看到我的 brew 正常的&#xff0c;且对应版本是4.0.17-63-g32f2258 如果你的电脑执行上面命名报错&#xff1a;zsh: command not found: br…

gbase8s之建表相关问题

第一章..绪论 1.1..背景 需要对明年所有系统的表新建。 1.2..要求 对导切建表可能遇到的一些问题罗列及解决办法。 第二章..新建表的的过程 1.1..获取DDL 获取DDL一定要在服务器上去获取&#xff0c;千万别用gds去导出ddl。 1.1.1..切换数据库用户 su – gbasedbt 1.1…

HTTP vs WebSocket

本文将对比介绍HTTP 和 WebSocket &#xff01; 相关文章&#xff1a; 1.HTTP 详解 2.WebSocket 详解 一、HTTP&#xff1a;请求/响应的主流协议 HTTP&#xff08;超文本传输协议&#xff09;是用于发送和接收网页数据的标准协议。它最早于1991年由Tim Berners-Lee提出来&…

如何查看GB28181流媒体平台LiveGBS中对GB28181实时视频数据统计的负载信息

目录 1、负载信息2、负载信息说明3、会话列表查看 3.1、会话列表4、停止会话5、搭建GB28181视频直播平台 1、负载信息 实时展示直播、回放、播放、录像、H265、级联等使用数目 2、负载信息说明 直播&#xff1a;当前推流到平台的实时视频数目回放&#xff1a;当前推流到平台的回…

OpenAI Canvas最新发布,编程和写作迎来全新史诗级加强!

文章目录 零、前言一、GPT-40 with canvas操作指导写作领域加强建议编辑调整长度阅读水平添加最后的润色添加表情 编程领域加强选中代码问问题添加评论&#xff08;添加注释&#xff09;添加日志转换语言代码审查 二、感受 零、前言 最新消息&#xff0c;国庆期间OpenAI有大动…

解放双手-Mac电脑自定义文件默认打开方式的最有效方法

你们使用Mac的过程中&#xff0c;文件格式是不是每次都要自己选择打开方式&#xff0c;文件类型太多了&#xff0c;默认打开方式没办法兼顾所有的文件类型&#xff0c;这样太麻烦了&#xff0c;如果收到了新文件类型的文件&#xff0c;每次都要弹窗选择打开方式会不会心累 试试…

QT工程概述

在Qt中&#xff0c;创建 "MainWindow" 与 "Widget" 项目的主要区别在于他们的用途和功能范围&#xff1a; MainWindow&#xff1a;这是一个包含完整菜单栏、工具栏和状态栏的主窗口应用程序框架。它适合于更复 杂的应用程序&#xff0c;需要这些额外的用户…

git删除错误的commit

文章目录 1、git删除错误的commit2、.gitignore配置文件不生效的问题 1、git删除错误的commit git的流程如图&#xff1a; 当某次失误造成commit的版本有问题&#xff0c;需要回退到正常的版本修改后重新add。 首先通过git log查看commit提交记录&#xff0c;可以看到HEAD-…

使用Pytorch写简单线性回归

文章目录 Pytorch一、Pytorch 介绍二、概念三、应用于简单线性回归 1.代码框架2.引用3.继续模型(1)要定义一个模型&#xff0c;需要继承nn.Module&#xff1a;(2)如果函数的参数不具体指定&#xff0c;那么就需要在__init__函数中添加未指定的变量&#xff1a; 2.定义数据3.实例…

Redis哨兵模式部署(超详细)

哨兵模式特点 主从模式的弊端就是不具备高可用性&#xff0c;当master挂掉以后&#xff0c;Redis将不能再对外提供写入操作&#xff0c;因此sentinel模式应运而生。sentinel中文含义为哨兵&#xff0c;顾名思义&#xff0c;它的作用就是监控redis集群的运行状况&#xff0c;此…

如何利用phpstudy创建mysql数据库

phpStudy诞生于2007年&#xff0c;是一款老牌知名的PHP开发集成环境工具&#xff0c;产品历经多次迭代升级&#xff0c;目前有phpStudy经典版、phpStudy V8&#xff08;2019版&#xff09;等等&#xff0c;利用phpstudy可以快速搭建一个mysql环境&#xff0c;接下来我们就开始吧…

Unity MVC框架1-2 实战分析

该课程资源来源于唐老狮&#xff0c;吃水不忘打井人&#xff0c;不胜感激 Unity MVC框架演示 1-1 理论分析-CSDN博客 首先你需要知道什么mvc框架&#xff0c;并且对三个层级有个比较清晰的认识&#xff0c;当然不清楚也好&#xff0c;下面例子中将会十分细心地让你理解&#x…

SpringBoot在高校竞赛平台开发中的优化策略

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理高校学科竞赛平台的相关信息成为必然。开发…

TensorFlow详细配置

Anaconda 的安装路径配置系统环境变量 1 windows path配置 2 conda info C:\Users\Administrator>conda info active environment : None user config file : C:\Users\Administrator\.condarc populated config files : C:\Users\Administrator\.condarc …