【C++贪心 DFS】2673. 使二叉树所有路径值相等的最小代价|1917

本文涉及知识点

C++贪心 反证法 决策包容性
C++DFS

LeetCode2673. 使二叉树所有路径值相等的最小代价

给你一个整数 n 表示一棵 满二叉树 里面节点的数目,节点编号从 1 到 n 。根节点编号为 1 ,树中每个非叶子节点 i 都有两个孩子,分别是左孩子 2 * i 和右孩子 2 * i + 1 。
树中每个节点都有一个值,用下标从 0 开始、长度为 n 的整数数组 cost 表示,其中 cost[i] 是第 i + 1 个节点的值。每次操作,你可以将树中 任意 节点的值 增加 1 。你可以执行操作 任意 次。
你的目标是让根到每一个 叶子结点 的路径值相等。请你返回 最少 需要执行增加操作多少次。
注意:
满二叉树 指的是一棵树,它满足树中除了叶子节点外每个节点都恰好有 2 个子节点,且所有叶子节点距离根节点距离相同。
路径值 指的是路径上所有节点的值之和。
示例 1:

在这里插入图片描述

输入:n = 7, cost = [1,5,2,2,3,3,1]
输出:6
解释:我们执行以下的增加操作:

  • 将节点 4 的值增加一次。
  • 将节点 3 的值增加三次。
  • 将节点 7 的值增加两次。
    从根到叶子的每一条路径值都为 9 。
    总共增加次数为 1 + 3 + 2 = 6 。
    这是最小的答案。
    示例 2:
    在这里插入图片描述

输入:n = 3, cost = [5,3,3]
输出:0
解释:两条路径已经有相等的路径值,所以不需要执行任何增加操作。
提示:
3 <= n <= 105
n + 1 是 2 的幂
cost.length == n
1 <= cost[i] <= 104

C++贪心

C++贪心

两轮DFS:
第一轮:后序DFS,求各子树最大路径和并保存,令整棵树路径和的最大值iMax。return 当前节点的值+ max(DFS1(左子树),DFS1(右子树));
第二轮: 前序DFS,当前节点增加:iMax - ( 当前节点的祖先节点和 + 本子树最大路径和)
性质一:由于只能增加,不能减少,所以最终路径和一定大于等于iMax。
性质二:路径和大于iMax,一定不是最优解。如果路径和大于iMax,说明所有路径都加了1,每条路径都减少一个增加的1。如果一条路径有多个节点可以减,减层次最小的(根节点层次最小,叶节点层次最大)。从层次小的节点开始减。这样可以避免某条路径被减少了两次,下面用反证法证明:
令路径p1的节点n1已经减1,给路径p2的节点n2减1的时候,p1再次减一。 → \rightarrow n1,n2都是p1的祖先,n2包括p2,n1不包括。 → \rightarrow n2的层次 < n1的层次。与假设矛盾。
结论一:最终路径和就是iMax。
如果某条路径需要增加,则在保证不让其他路径超过iMax的情况下,增加层次小的节点。这样可以让更多的路径增加。决策包容性
DFS2(cur,need)
cur += need - 当前子树最大路径值
DFS2(左子树,need-cur)
DFS2(右子树,need-cur)
为了方便计算,可以插入任意一个原始,这样下标就从1开始。

代码

核心代码

class Solution {
		public:
			int minIncrements(int N, vector<int>& cost) {
				cost.insert(cost.begin(), 0);
				vector<int> maxs(N + 1);
				function<int(int)> DFS1 = [&](int root) {
					if (root > N) { return 0; }
					return maxs[root] = cost[root] + max(DFS1(root * 2), DFS1(root * 2 + 1));
				};
				const int iMax = DFS1(1);
				int ans = 0;
				function<void(int, int)> DFS2 = [&](int root, int need) {
					if (root > N) { return; }
					const int iAdd = need - maxs[root];
					ans += iAdd;
					DFS2(2 * root, need - iAdd - cost[root]);
					DFS2(2 * root + 1, need - iAdd - cost[root]);
				};
				DFS2(1, iMax);
				return ans;
			}			
		};

单元测试

int n;
		vector<int> cost;
		TEST_METHOD(TestMethod11)
		{
			n = 7, cost = { 1, 5, 2, 2, 3, 3, 1 };
			auto res = Solution().minIncrements(n, cost);
			AssertEx(6, res);
		}
		TEST_METHOD(TestMethod12)
		{
			n = 3, cost = { 5,3,3 };
			auto res = Solution().minIncrements(n, cost);
			AssertEx(0, res);
		}

优化(不需要DFS)

任何叶子节点必须和兄弟节点相等,否则这两条路径必定不等。
一,将所有叶子节点增加到和他的兄弟节点相等。
二,令当前树为cur,将各左叶子加到父节节点。删除所有叶子节点,形成新树next。cur符合题意    ⟺    \iff next符合题意。
执行一二,树的最大层次会减少1。不断执行,直到树的层次为1,结束。
无需DFS,直接按节点编号从大到小执行。

class Solution {
		public:
			int minIncrements(int N, vector<int>& cost) {
				cost.insert(cost.begin(), 0);
				int ans = 0;
				for (int i = N; i > 1; i-=2 ) {
					const int iMin = min(cost[i], cost[i - 1]);
					const int iMax = max(cost[i], cost[i - 1]);
					ans += iMax - iMin;
					cost[i / 2] += iMax;
				}
				return ans;
			}			
		};

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/890599.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

java数据库操作-cnblog

创建lib目录&#xff0c;填入jar包 选择 libraries添加lib目录 package nb;import java.sql.Connection; import java.sql.DriverManager; import java.sql.SQLException;public class JDBCtest {private static final String url "jdbc:mysql://localhost:3306/test?c…

SAP学习笔记 - 豆知识12 - 自动批量更新会计期间

网上买的那种SAP学习虚拟机&#xff0c;一般都是古老的会计期间。 要想更新到现在的日期&#xff0c;需要MMRV/MMPV挨月更新&#xff0c;感叹SAP挺会折磨人。 之前也做过多次探索&#xff0c;基本都没太成功。 SAP MM学习笔记 - 豆知识10 - OMSY 初期化会计期间&#xff0c;…

深入探索Spring Cloud Gateway:微服务网关的最佳实践

优质博文&#xff1a;IT-BLOG-CN Spring Cloud Gateway作为Spring Cloud框架的第二代网关&#xff0c;在功能上要比Zuul更加的强大&#xff0c;性能也更好。随着Spring Cloud的版本迭代&#xff0c;Spring Cloud官方有打算弃用Zuul的意思。在笔者调用了Spring Cloud Gateway的…

使用 Visual Studio Installer Projects 打包 C# WinForms 程序的教程

前言 在开发完成一个 C# WinForms 程序后&#xff0c;打包成安装程序是发布和分发软件的重要步骤之一。通过使用 Visual Studio Installer Projects&#xff0c; 可以轻松创建一个 .exe 或 .msi 格式的安装包供用户安装。本文将详细介绍如何使用 Visual Studio Installer Proj…

网络资源模板--Android Studio 实现简易记事本App

目录 一、项目演示 二、项目测试环境 三、项目详情 四、完整的项目源码 一、项目演示 网络资源模板--基于Android studio 实现的简易记事本App 二、项目测试环境 三、项目详情 首页 创建一个空的笔记本列表 mNotebookList。使用该列表和指定的布局资源 item_notebook 创建…

苹果最新论文:LLM只是复杂的模式匹配 而不是真正的逻辑推理

大语言模型真的可以推理吗&#xff1f;LLM 都是“参数匹配大师”&#xff1f;苹果研究员质疑 LLM 推理能力&#xff0c;称其“不堪一击”&#xff01;苹果的研究员 Mehrdad Farajtabar 等人最近发表了一篇论文&#xff0c;对大型语言模型 &#xff08;LLM&#xff09; 的推理能…

2.实现第一个three.js程序

实现第一个three.js程序 1.目标效果 注意一个版本问题&#xff1a;three.js版本并不稳定&#xff0c;几乎每个月都会更新一个小版本&#xff0c;尽可能使用固定版本进行开发&#xff0c;事实上我们入门的话&#xff0c;只掌握其中一个版本即可&#xff0c;如果使用新版本&…

文件与fd

访问文件前&#xff0c;为什么必须要打开文件&#xff1f;/ 打开文件的实质 访问文件前&#xff0c;都必须先打开它&#xff0c; 如fopen 访问文件时&#xff0c;是进程在访问 所以文件必须加载到内存中 我们要访问文件时&#xff0c;一定要通过内存访问 文件没有被打开时&am…

多线程(三):线程等待获取线程引用线程休眠线程状态

目录 1、等待一个线程&#xff1a;join 1.1 join() 1.2 join(long millis)——"超时时间" 1.3 join(long millis&#xff0c;int nanos) 2、获取当前线程的引用&#xff1a;currentThread 3、休眠当前进程&#xff1a;sleep 3.1 实际休眠时间 3.2 sleep的特殊…

SQLI LABS | SQLI LABS 靶场初识

关注这个靶场的其它相关笔记&#xff1a;SQLI LABS —— 靶场笔记合集-CSDN博客 0x01&#xff1a;SQLI LABS 靶场简介 SQLi-Labs 靶场是一个专门用于学习和测试 SQL 注入漏洞的开源靶场&#xff0c;该靶场提供了多个具有不同漏洞类型和难度级别的 Web 应用程序的环境。这些应用…

C++ | Leetcode C++题解之第477题汉明距离总和

题目&#xff1a; 题解&#xff1a; class Solution { public:int totalHammingDistance(vector<int> &nums) {int ans 0, n nums.size();for (int i 0; i < 30; i) {int c 0;for (int val : nums) {c (val >> i) & 1;}ans c * (n - c);}return …

matlab 相关

1、xcorr 本质上是两个函数做内积运算 相关算法有两种&#xff1a; 在Matlab上既可以 1.用自带的xcorr函数计算互相关&#xff0c;2.通过在频域上乘以共轭复频谱来计算互相关&#xff1b; 网友验证程序 clc;clear;close all; % s1,s2为样例数据 s1 [-0.00430297851562500;-…

[C++ 核心编程]笔记 4.1.2 struct和class的区别

4.1.2 struct和class的区别 在C中 struct和class唯一的区别就在于 默认的访问权限不同 区别: struct 默认权限为公共class 默认权限为私有 #include<iostream> using namespace std;class C1 {int m_A;//默认私有 }; struct C2 {int m_A;//默认共有 };int main() {//s…

【3dgs】Gaussian-SLAM发展关键历程梳理

【3dgs】Gaussian-SLAM 0. 写在前面1. 3D Splatting与SLAM流程2. Splatting SLAM&#xff1a;单目/RGB-D(2024年新作&#xff09;2.1 相机跟踪精度2.2 新视图渲染性能2.3 消融实验 3. Gaussian-SLAM&#xff08;Photo-SLAM&#xff09; Photo-SLAM技术原理详解 ORBSLAM3dGS&am…

超GPT3.5性能,无限长文本,超强RAG三件套,MiniCPM3-4B模型分享

MiniCPM3-4B是由面壁智能与清华大学自然语言处理实验室合作开发的一款高性能端侧AI模型&#xff0c;它是MiniCPM系列的第三代产品&#xff0c;具有4亿参数量。 MiniCPM3-4B模型在性能上超过了Phi-3.5-mini-Instruct和GPT-3.5-Turbo-0125&#xff0c;并且与多款70亿至90亿参数的…

CentOS快速配置网络Docker快速部署

CentOS快速配置网络&&Docker快速部署 CentOS裸机Docker部署1.联通外网2.配置CentOS镜像源3.安装Docker4.启动Docker5.CentOS7安装DockerCompose Bug合集ERROR [internal] load metadata for docker.io/library/java:8-alpineError: Could not find or load main class …

动力电池SOC估算方法

1. SOC介绍 电池的荷电状态SOC反映电池的剩余容量状况&#xff0c;即在一定的放电倍率下&#xff0c;当前电池的剩余容量与总容量的比值。 为了充分发挥电池性能和提高安全性&#xff0c;需要准确估算电池SOC。动力电池在使用过程中表现的高度非线性提高了SOC估算的难度&#…

(04)python-opencv图像处理——图像阈值、平滑图像、形态转换、图像梯度

目录 前言 一、图像阈值 1.1 简单的阈值法 1.2 自适应阈值 二、平滑图像 2.1 二维卷积(图像滤波) 2.2 图像模糊 2.2.1均值模糊 2.2.2高斯模糊 2.2.3 中值滤波 2.2.4 双边滤波 三、形态转换 1、腐蚀 2、膨胀 3、开运算 4、闭运算 四、图像梯度 Sobel 和 Scharr …

【Ubuntu】“Linux版PhotoShop”绘图软件的安装和汉化

【Ubuntu】“Linux版PhotoShop”绘图软件的安装和汉化 零、前言 最近换了Linux系统&#xff0c;但是写教程做PPT的时候还是得用到绘图软件&#xff0c;上网一查&#xff0c;总结对比之后发现Krita比较好用&#xff0c;故此讲解一下如何安装和汉化Krita。 壹、安装 安装很简…

探索 Python 装饰器的新境界:wrapt 库的神秘力量

文章目录 探索 Python 装饰器的新境界&#xff1a;wrapt 库的神秘力量背景&#xff1a;为何选择 wrapt&#xff1f;wrapt 是什么&#xff1f;如何安装 wrapt&#xff1f;简单的 wrapt 库函数使用方法创建简单装饰器保持元信息处理参数传递 场景应用&#xff1a;wrapt 的实际用例…