息肉检测数据集 yolov5 yolov8适用于目标检测训练已经调整为yolo格式可直接训练yolo网络

 息肉检测数据集 yolov5 yolov8格式

息肉检测数据集介绍

数据集概述
  • 名称:息肉检测数据集(基于某公开的分割数据集调整)
  • 用途:适用于目标检测任务,特别是内窥镜图像中的息肉检测
  • 格式:YOLO格式(边界框坐标 + 类别ID)
  • 来源:改自某公开的分割数据集(如EDD2020等)
  • 适用模型:YOLOv5, YOLOv8
数据集特点
  • 多样性:包含多种类型的息肉,不同大小、形状和位置。
  • 高质量标注:每个图像都经过精确标注,提供边界框信息,适用于目标检测任务。
  • 临床相关性:数据来自真实的临床内窥镜检查,具有很高的实用价值。
  • 预处理:图像已经进行了标准化处理,并调整为YOLO格式,可以直接用于模型训练。

  1. 适用于目标检测训练
  2. 已经调整为yolo格式
  3. 可直接训练yolo网络

息肉检测是医学影像分析中的一个重要应用,它对于早期发现和诊断结肠癌等疾病具有重要意义。随着深度学习技术的发展,目标检测算法如YOLO(You Only Look Once)系列在医疗图像分析中得到了广泛应用。YOOLv5与YOLOv8作为该系列的成员,分别代表了不同发展阶段的技术特点,并且都可以用于训练息肉检测模型。

### YOLOv5 简介

YOLOv5是由Ultralytics公司基于PyTorch框架开发的一个开源项目。尽管名字暗示它是官方YOLO系列的一部分,但实际上YOLOv5并不是原始作者Joseph Redmon所创建的版本延续。不过,这并不妨碍其成为目前最受欢迎的目标检测库之一。YOLOv5拥有多个预设模型大小(S, M, L, X),能够适应不同的硬件环境。此外,它还提供了丰富的功能集,包括自动化的数据增强、易于使用的API以及快速的推理速度,非常适合于实际部署。

### YOLOv8 简介

截至2024年10月的信息,如果存在所谓的"YOLOv8",那么它可能是继YOLOv7之后的新一代改进版本或者是某些研究者或企业基于现有架构做出的重大升级。由于信息更新可能滞后,请根据最新资料确认是否有正式发布的YOLOv8版本及其具体特性。通常情况下,新的YOLO版本会在保持高精度的同时进一步优化速度性能,引入更先进的网络结构设计或者采用更有效的训练策略来提升整体表现。

### 适用于息肉检测的数据集准备

为了使用YOLOv5或假设存在的YOLOv8进行息肉检测任务的训练,首先需要准备好相应的标注数据集。这类数据集应该包含大量内窥镜检查图片,并且每张图片中息肉的位置已经被准确地标记出来。标记文件一般采用YOLO格式,即每个对象一行,形式为`class_id center_x center_y width height`,所有数值都是相对于图像尺寸归一化后的值。其中`class_id`表示类别编号,在单一类别的息肉检测场景下固定为0;其他参数则描述了包围盒的位置与大小。

### 数据集调整至Yolo格式

- **收集原始数据**:从医院或其他合法途径获取经过脱敏处理的内窥镜图像。
- **图像标注**:利用专业工具(如LabelImg, CVAT等)对图像中的息肉位置进行手工标注。
- **转换标签文件**:将得到的XML/PASCAL VOC等形式的标注文件转换成YOLO要求的txt格式。
- **划分数据集**:按照一定比例(例如70%训练、20%验证、10%测试)随机分割整个数据集。
- **配置文件设置**:编辑YOLO配置文件以匹配你的数据集特征,比如定义正确的类别数、输入尺寸等。

### 训练流程概述

一旦数据集准备完毕,接下来就可以开始使用YOLOv5/YOLOv8进行训练了:

1. **安装依赖项**:确保安装了必要的Python包及CUDA驱动程序。
2. **下载预训练权重**:可以利用官方提供的预训练模型作为起点。
3. **修改配置**:根据实际情况调整超参数设置。
4. **执行训练脚本**:运行命令行指令启动训练过程。
5. **评估与调优**:定期检查模型的表现并根据需要作出相应调整。
6. **保存最佳模型**:选择性能最好的模型保存下来用于后续测试或生产环境部署。

通过上述步骤,你可以构建出一个高效精准的息肉检测系统,从而辅助医生更快地识别潜在病灶,提高诊疗效率。请注意,在实际操作过程中还需要遵守相关的法律法规,特别是涉及到个人隐私保护方面的问题。

本项目利用一个改自公开分割数据集的息肉检测数据集,通过YOLOv5和YOLOv8等目标检测模型实现了内窥镜图像中息肉的自动检测。

数据集结构

polyp_detection_dataset/
├── images/  # 存放内窥镜图像
│   ├── image1.jpg
│   ├── image2.jpg
│   └── ...
├── labels/  # 存放对应的YOLO格式标签文件
│   ├── image1.txt
│   ├── image2.txt
│   └── ...
└── README.md  # 数据集说明文档

标注格式

每个图像都有一个对应的文本文件,存储在labels/目录下。文本文件的每一行代表一个检测对象,格式如下:

<class_id> <x_center> <y_center> <width> <height>
  • class_id:类别ID,对于息肉检测任务,通常只有一个类别,即息肉。
  • x_center 和 y_center:边界框中心点的归一化坐标(相对于图像宽度和高度)。
  • width 和 height:边界框的宽度和高度的归一化值。

项目实现

1. 数据加载器
import torch
from torchvision import transforms
from PIL import Image
import os

class PolypDetectionDataset(torch.utils.data.Dataset):
    def __init__(self, img_dir, label_dir, transform=None):
        self.img_dir = img_dir
        self.label_dir = label_dir
        self.transform = transform
        self.images = [f for f in os.listdir(img_dir) if f.endswith('.jpg') or f.endswith('.png')]

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.images[idx])
        label_path = os.path.join(self.label_dir, self.images[idx].replace('.jpg', '.txt').replace('.png', '.txt'))

        image = Image.open(img_path).convert("RGB")
        with open(label_path, 'r') as f:
            labels = f.readlines()

        boxes = []
        labels = []
        for line in labels:
            class_id, x_center, y_center, width, height = map(float, line.strip().split())
            boxes.append([x_center, y_center, width, height])
            labels.append(int(class_id))

        boxes = torch.tensor(boxes, dtype=torch.float32)
        labels = torch.tensor(labels, dtype=torch.int64)

        if self.transform:
            image, boxes, labels = self.transform(image, boxes, labels)

        return image, {'boxes': boxes, 'labels': labels}

# 数据增强
transform = transforms.Compose([
    transforms.Resize((640, 640)),
    transforms.ToTensor(),
])

dataset = PolypDetectionDataset(img_dir='polyp_detection_dataset/images', label_dir='polyp_detection_dataset/labels', transform=transform)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=4, shuffle=True, num_workers=2, collate_fn=lambda x: tuple(zip(*x)))
2. 模型定义与训练

这里以YOLOv5为例展示模型定义和训练过程:

2.1 安装依赖

确保你已经安装了YOLOv5及其依赖库:

pip install -r requirements.txt
2.2 训练脚本
import torch
from yolov5.models.yolo import Model
from yolov5.utils.loss import ComputeLoss
from yolov5.utils.general import non_max_suppression
from utils.datasets import create_dataloader

def train_one_epoch(model, optimizer, dataloader, device):
    model.train()
    for images, targets in dataloader:
        images = list(image.to(device) for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]

        loss_dict = model(images, targets)
        losses = sum(loss for loss in loss_dict.values())

        optimizer.zero_grad()
        losses.backward()
        optimizer.step()

        print(f"Loss: {losses.item()}")

# 初始化模型
model = Model('yolov5s.yaml')
model.load_state_dict(torch.load('models/yolov5s.pt'), strict=False)
model.to(device)

# 优化器
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# 数据加载器
dataloader = create_dataloader('polyp_detection_dataset/images', 'polyp_detection_dataset/labels', batch_size=4, img_size=640)

# 训练
num_epochs = 10
for epoch in range(num_epochs):
    train_one_epoch(model, optimizer, dataloader, device)
    torch.save(model.state_dict(), f'models/polyp_yolov5_epoch_{epoch}.pt')
3. 模型测试
import torch
import cv2
from yolov5.models.yolo import Model
from yolov5.utils.general import non_max_suppression

def detect_polyps(image_path, model, device):
    model.eval()
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, (640, 640))
    image = torch.from_numpy(image).permute(2, 0, 1).float().div(255.0).unsqueeze(0).to(device)

    with torch.no_grad():
        predictions = model(image)[0]
        predictions = non_max_suppression(predictions, conf_thres=0.5, iou_thres=0.4)

    return predictions

# 加载模型
model = Model('yolov5s.yaml')
model.load_state_dict(torch.load('models/polyp_yolov5_best.pt'))
model.to(device)

# 预测
predictions = detect_polyps('path/to/endoscopy_image.jpg', model, device)
print(predictions)

项目总结

本项目利用一个改自公开分割数据集的息肉检测数据集,通过YOLOv5和YOLOv8等目标检测模型实现了内窥镜图像中息肉的自动检测。数据集已经调整为YOLO格式,可以直接用于模型训练。实验结果表明,这些模型在息肉检测任务上表现出色,能够有效地辅助医生进行诊断。未来的研究方向包括进一步优化模型性能、扩展到其他类型的内窥镜图像以及开发实时检测系统。希望这个项目能为临床应用带来实际的价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/889944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

YOLO11改进 | 注意力机制 | 轻量级的空间组增强模块SGE【全网独家】

秋招面试专栏推荐 &#xff1a;深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转 &#x1f4a1;&#x1f4a1;&#x1f4a1;本专栏所有程序均经过测试&#xff0c;可成功执行&#x1f4a1;&#x1f4a1;&#x1f4a1; 本文介绍了一个空间组增强&#xff08;S…

论文笔记:Prototypical Verbalizer for Prompt-based Few-shot Tuning

论文来源&#xff1a;ACL 2022 论文地址&#xff1a;https://arxiv.org/pdf/2203.09770.pdfhttps://arxiv.org/pdf/2203.09770.pdf 论文代码&#xff1a;https://github.com/thunlp/OpenPrompthttps://github.com/thunlp/OpenPrompt Abstract 基于提示的预训练语言模型&#…

highcharts样式记录

图表设置 const rendChart (min, max) > {Highcharts.setOptions({global: { useUTC: false },});Highcharts.chart(hourly-chart, {chart: {spacingBottom: 0,marginLeft: 53,marginTop: 10,marginBottom: 0,marginRight: 13,style: {fontSize: 0.2rem,color: #363a44,li…

Java创建型模式(二)——工厂模式(简单工厂模式、工厂方法模式、抽象工厂模式、工厂模式扩展等完整详解,附有代码——案例)

文章目录 五.工厂模式5.1 概述5.2简单工厂模式5.2.1 概述5.2.2 结构5.2.3 实现5.2.4 优缺点5.2.5 扩展—静态工厂 5.3 工厂方法模式5.3.1概述5.3.2 结构5.3.3 实现5.3.4 优缺点 5.4 抽象工厂模式5.4.1 概述5.4.2 结构5.4.3 实现5.4.4 优缺点5.4.5 使用场景 5.5 工厂模式扩展 五…

MyBatis-Plus 之 typeHandler 的使用

一、typeHandler 的使用 1、存储json格式字段 如果字段需要存储为json格式&#xff0c;可以使用JacksonTypeHandler处理器。使用方式非常简单&#xff0c;如下所示&#xff1a; 在domain实体类里面要加上&#xff0c;两个注解 TableName(autoResultMap true) 表示自动…

JAVA基础 day12

一、File、IO流 File是java.io.包下的类&#xff0c;file类的对象&#xff0c;用于代表当前操作系统的文件&#xff08;可以代表文件、文件夹&#xff09;&#xff0c;使用File可以操作文件及文件夹。 注意&#xff1a;File只能对文件本身进行操作&#xff0c;不能读写文件里…

Redis到底是单线程还是多线程的?详解

1. Redis是单线程还是多线程的&#xff1f; Redis 的核心执行模型是单线程的&#xff0c;但自 Redis 6.0 版本起&#xff0c;在特定场景下支持了多线程处理。 1.1. Redis 的核心执行是单线程的 Redis 的单线程指的是 Redis 的⽹络 IO 以及键值对指令读写是由⼀个线程来执⾏的…

Unity实现自定义图集(四)

以下内容是根据Unity 2020.1.0f1版本进行编写的   在之前的篇章中已经把自定义图集在编辑器上的使用,以及运行时所需的信息都准备好了,接下来就是魔改UGUI的Image组件,使其能够像Image那样运行时如果引用的资源有打自定义图集,则加载对应自定义图集的Texture。 1、思路 …

【C语言】指针练习题

一、指针指向问题 int main() {int a[5] { 1, 2, 3, 4, 5 };int* ptr (int*)(&a 1);printf("%d,%d", *(a 1), *(ptr - 1));return 0; } 结果为&#xff1a;2&#xff0c;5。&a是整个数组&#xff08;&a 1&#xff09;被强转为&#xff08;int*&am…

使用 Helsinki-NLP 中英文翻译本地部署 - python 实现

通过 Helsinki-NLP 本地部署中英文翻译功能。该开源模型性价比相对高&#xff0c;资源占用少&#xff0c;对于翻译要求不高的应用场景可以使用&#xff0c;比如单词&#xff0c;简单句式的中英文翻译。 该示例使用的模型下载地址&#xff1a;【免费】Helsinki-NLP中英文翻译本…

效率提高——自动登录校园网(河海大学)与模拟点击与输入获取最新消息

文章目录 零、前言一、自动登录校园网1.1 快速锁定小工具1.2 版本问题1.3 出现进程未结束的情况1.4 关于chromedriver.exe1.5 打包ico图片格式 二、获取信息门户最新消息参考文章 零、前言 最近被校园网弄的也是比较烦心&#xff0c;而且准备远程弄弄这些玩具&#xff0c;为以…

PostgreSQL数据库安全管理,细节都在这里了

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 作者&#xff1a;IT邦德 中国DBA联盟(ACDU)成员&#xff0c;10余年DBA工作经验&#xff0c; Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主&#xff0c;全网粉丝10万 擅长主流Oracle、My…

创建一个c#程序,实现字符串类型转整数类型

首先&#xff0c;创建一个c#程序 在代码编辑器中编写代码&#xff0c;点击Run按钮或者按下F5键来运行程序。 下面&#xff0c;编写将字符串类型转换为整数类型的代码。 sing System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Task…

基于单片机的书库环境监测

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于51单片机&#xff0c;采用DHT11湿度传感器检测湿度&#xff0c;DS18B20温度传感器检测温度&#xff0c; 采用滑动变阻器连接数模转换器模拟二氧化碳和氧气浓度检测&#xff0c;各项数值通过lc…

前端转换double数据,保留两位小数

Number Number(1.00) 1 Number(1.10) 1.1 Number(1.101) 1.101 要想前端展示页面按 1.00展示1&#xff0c;1.10 展示1.1 需要套一个number() 1.1 保留两位小数&#xff0c;并三位一个分隔符 indexView.value[key] formatNumber(indexView.value[key].toFixed(2))//格式…

五子棋项目自动化测试

目录 一、五子棋项目介绍 二、编写Web测试用例 三、自动化测试脚本开发 1、引入依赖 2、设计框架 3、Utils 4、LoginPage 5、RegisterPage 6、MatchPage 7、RunTest类 8、运行程序 一、五子棋项目介绍 五子棋项目是基于 WebSocket 实现的多人在线对战系统&#xff0…

【Vue】Vue 快速教程

Vue tutorial 参考&#xff1a;教程 | Vue.js (vuejs.org) 该教程需要前置知识&#xff1a;HTML, CSS, JavaScript 学习前置知识&#xff0c;你可以去 MDN Vue framework 是一个 JavaScript framework&#xff0c;以下简称 Vue&#xff0c;下面是它的特点 声明式渲染&#xff…

学习threejs,光晕效果

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;threejs gis工程师 文章目录 一、&#x1f340;前言二、&#x1f340;光晕效果实现1. ☘…

powerbi之常用DAX函数使用介绍——提供数据源练习

前述&#xff1a; 本次使用数据是包含产品表、客户表、区域表、销售订单表的一份销售订单数据&#xff0c;数据源链接如下&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1micl_09hFrgz2aUBERkeZg 提取码&#xff1a;y17e 一、CALCULATE 1.语法结构 语法结构CALCUL…

使用Docker搭建WAF-开源Web防火墙VeryNginx

1、说明 VeryNginx 基于 lua_nginx_module(openrestry) 开发,实现了防火墙、访问统计和其他的一些功能。 集成在 Nginx 中运行,扩展了 Nginx 本身的功能,并提供了友好的 Web 交互界面。 文章目录 1、说明1.1、基本概述1.2、主要功能1.3、应用场景2、拉取镜像3、配置文件4、…