知识图谱入门——7:阶段案例:使用 Protégé、Jupyter Notebook 中的 spaCy 和 Neo4j Desktop 搭建知识图谱

在 Windows 环境中结合使用 ProtégéJupyter Notebook 中的 spaCyNeo4j Desktop,可以高效地实现从自然语言处理(NLP)到知识图谱构建的全过程。本案例将详细论述环境配置、步骤实现以及一些扩展和不足之处。
源文件已上传我的资源区。

文章目录

  • 1. 环境准备
    • 1.1 Neo4j Desktop 安装和配置
    • 1.2 安装并启动 Protégé
    • 1.3 配置 spaCy 环境(Jupyter Notebook)
      • 1.3.1 安装 spaCy
      • 1.3.2 安装 Jupyter 和 ipykernel
    • 1.4 启动 Jupyter Notebook
  • 2. 案例实现步骤
    • 2.1 数据示例
    • 2.2 使用 spaCy 进行实体识别和关系抽取
    • 2.3 将抽取的实体和关系导入 Neo4j
    • 2.4 在 Neo4j Desktop 中查看数据
  • 3. Neo4j导出数据
    • 3.1 在 Neo4j 中准备数据
    • 3.2. 导出 Neo4j 数据
      • 3.2.1 导出实体(如运动员和地点)
      • 3.2.2 导出关系(如 BORN_IN)
  • 4. 转换为 OWL 格式
    • 4.1 使用 Python 编程库
      • a. **`owlready2`**
      • b. **`RDFLib`**
        • 环境准备
        • 案例代码
        • 代码解释
        • 注意事项
        • 选择合适的方法
    • 4.2 其他
  • 5. 在 Protégé 中加载 OWL 文件和处理
    • 4.1 打开 Protégé
    • 4.2 创建或打开本体
    • 4.3 导入 OWL 文件
    • 4.4 验证数据
    • 4.5 后续步骤
  • 5. 案例总结
  • 6. 不足与补充
  • 相关阅读

1. 环境准备

1.1 Neo4j Desktop 安装和配置

  • 安装 Neo4j Desktop:访问 Neo4j 官网 下载并安装 Neo4j Desktop。
  • 启动本地数据库:创建一个新的数据库,并确保 Bolt 协议(默认端口:7687)和 REST API(默认端口:7474)启用。
    前置博客:
    知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)

1.2 安装并启动 Protégé

  • 下载和安装 Protégé:访问 Protégé 官网 下载并安装最新版本。
  • 启动 Protégé:运行应用程序并创建或打开本体项目。
    前置博客:
    知识图谱入门——4:Protégé 5.6.4安装和主要功能介绍、常用插件(2024年10月2日):知识图谱构建的利器

1.3 配置 spaCy 环境(Jupyter Notebook)

使用以下步骤在 Python 环境中配置 spaCy。

1.3.1 安装 spaCy

运行以下命令创建虚拟环境并安装 spaCy 和中文模型(因为有库冲突,建议新建环境):

# 创建虚拟环境
python -m venv spacy_env

# 激活虚拟环境
spacy_env\Scripts\activate  # Windows

# 安装 spaCy
pip install spacy
python -m spacy download zh_core_web_sm  # 中文模型

在这里插入图片描述

1.3.2 安装 Jupyter 和 ipykernel

确保可以在 Jupyter Notebook 中使用 spaCy 虚拟环境:

pip install jupyter ipykernel
python -m ipykernel install --name spacy_env --display-name "spacy_env"

1.4 启动 Jupyter Notebook

在虚拟环境中运行 Jupyter Notebook:

jupyter notebook

在新建的笔记本中选择内核为 “spaCy Environment”

在这里插入图片描述

2. 案例实现步骤

2.1 数据示例

假设我们有如下文本数据,描述了一些运动员的信息:

姚明,出生于中国上海,前中国篮球运动员,曾效力于NBA休斯顿火箭队。
刘翔,出生于中国上海,前中国田径运动员,曾获得奥运会110米栏冠军。

2.2 使用 spaCy 进行实体识别和关系抽取

在 Jupyter Notebook 中,使用 spaCy 进行命名实体识别(NER):

import spacy

# 加载中文模型
nlp = spacy.load("zh_core_web_sm")

# 示例文本
texts = [
    "姚明,出生于中国上海,前中国篮球运动员,曾效力于NBA休斯顿火箭队。",
    "刘翔,出生于中国上海,前中国田径运动员,曾获得奥运会110米栏冠军。"
]

# 处理文本
for text in texts:
    doc = nlp(text)
    print(f"Processing text: {text}")
    for ent in doc.ents:
        print(f"Entity: {ent.text}, Label: {ent.label_}")

在这里插入图片描述

2.3 将抽取的实体和关系导入 Neo4j

我们使用 py2neo 将抽取的实体和关系导入到 Neo4j(使用前要启动!):

from py2neo import Graph, Node, Relationship

# 连接到 Neo4j 本地数据库
graph = Graph("bolt://localhost:7687", auth=("neo4j", "password(12345678)"))

# 创建节点和关系
for text in texts:
    doc = nlp(text)
    entities = [ent.text for ent in doc.ents]
    if len(entities) >= 2:
        athlete = Node("Athlete", name=entities[0])
        location = Node("Location", name=entities[1])
        
        # 创建节点
        graph.merge(athlete, "Athlete", "name")
        graph.merge(location, "Location", "name")
        
        # 创建关系
        born_in = Relationship(athlete, "BORN_IN", location)
        graph.merge(born_in)

        # 打印插入信息
        print(f"Added {entities[0]} born in {entities[1]} to Neo4j")

在这里插入图片描述
在这里插入图片描述

2.4 在 Neo4j Desktop 中查看数据

使用 Neo4j 的 Cypher 查询语言检查插入的数据:

MATCH (a:Athlete)-[r:BORN_IN]->(l:Location)
RETURN a, r, l

都可以点击*和查询语言:
在这里插入图片描述

3. Neo4j导出数据

将 Neo4j 中的数据加载到 Protégé 进行本体管理,通常通过导出 Neo4j 的数据并转换为 OWL(Web Ontology Language)格式,再在 Protégé 中导入。以下是详细步骤:

3.1 在 Neo4j 中准备数据

确保 Neo4j 数据库中包含所有希望导入到 Protégé 的实体和关系。使用 Cypher 查询检查数据,例如:

MATCH (a:Athlete)-[r:BORN_IN]->(l:Location)
RETURN a, r, l

整体导出:
在这里插入图片描述
效果如:
在这里插入图片描述

3.2. 导出 Neo4j 数据

利用 Neo4j 提供的工具或 Cypher 查询将数据导出为 CSV 格式,步骤如下:

3.2.1 导出实体(如运动员和地点)

使用以下 Cypher 查询导出 AthleteLocation 节点为 CSV 文件(导出同上,不在截图):

// 导出运动员数据
MATCH (a:Athlete)
RETURN a.name AS Name
// 导出地点数据
MATCH (l:Location)
RETURN l.name AS Name

在 Neo4j 浏览器中,点击结果表格右上角的导出按钮,选择 “CSV” 格式。

3.2.2 导出关系(如 BORN_IN)

使用以下查询导出运动员与出生地之间的关系:

// 导出关系数据
MATCH (a:Athlete)-[r:BORN_IN]->(l:Location)
RETURN a.name AS Athlete, l.name AS Location

同样,将结果导出为 CSV 文件。

4. 转换为 OWL 格式

下面是几种常用的方法,将数据转换为 OWL 格式的综述,包括编程库、图形化工具和在线服务:

4.1 使用 Python 编程库

a. owlready2

  • 功能: 提供一个简单的 API 来创建和管理 OWL 本体。
  • 优点: 灵活、强大,适合需要编程的用户。
  • 示例代码:
    import pandas as pd
    from owlready2 import *
    
    # 创建 OWL 本体
    onto = get_ontology("http://example.com/ontology.owl")
    
    # 定义类和属性
    with onto:
        class Athlete(Thing): pass
        class Location(Thing): pass
        class BORN_IN(ObjectProperty):
            domain = [Athlete]
            range = [Location]
    
    # 读取 CSV 数据并转换
    data_df = pd.read_csv('data.csv')
    for _, row in data_df.iterrows():
        athlete_instance = Athlete(row['a'].split("{name: ")[1].rstrip("}").strip('"'))
        location_instance = Location(row['l'].split("{name: ")[1].rstrip("}").strip('"'))
        athlete_instance.BORN_IN.append(location_instance)
    
    # 保存为 OWL 文件
    onto.save("output.owl")
    

b. RDFLib

  • 功能: 一个用于处理 RDF 数据的 Python 库,支持多种数据格式的转换。
  • 优点: 灵活,可用于批量处理和自动化任务。
  • 操作示例:
    • 读取 CSV 文件并构建 RDF 图,然后使用 RDFLib 保存为 OWL 格式。
      以下是一个使用 RDFLib 的简单案例,演示如何使用 Python 创建一个 RDF 图,添加一些三元组,并将其导出为 OWL 格式。
环境准备

确保你已经安装了 RDFLib。如果还没有安装,可以使用 pip 安装:

pip install rdflib
案例代码

以下代码示例演示了如何创建一个简单的 RDF 图,添加一些数据,然后将其导出为 OWL 文件。

from rdflib import Graph, URIRef, Literal, RDF, RDFS

# 创建一个 RDF 图
g = Graph()

# 定义命名空间
EX = URIRef("http://example.com/")

# 添加类
g.add((EX.Athlete, RDF.type, RDFS.Class))
g.add((EX.Location, RDF.type, RDFS.Class))

# 添加属性
g.add((EX.BORN_IN, RDF.type, RDF.Property))
g.add((EX.BORN_IN, RDFS.domain, EX.Athlete))
g.add((EX.BORN_IN, RDFS.range, EX.Location))

# 添加个体
g.add((EX.LiuXiang, RDF.type, EX.Athlete))
g.add((EX.LiuXiang, RDFS.label, Literal("刘翔")))
g.add((EX.YaoMing, RDF.type, EX.Athlete))
g.add((EX.YaoMing, RDFS.label, Literal("姚明")))

g.add((EX.LiuXiang, EX.BORN_IN, EX.ChinaShanghai))
g.add((EX.ChinaShanghai, RDF.type, EX.Location))
g.add((EX.ChinaShanghai, RDFS.label, Literal("中国上海")))

g.add((EX.YaoMing, EX.BORN_IN, EX.Beijing))
g.add((EX.Beijing, RDF.type, EX.Location))
g.add((EX.Beijing, RDFS.label, Literal("北京")))

# 保存为 OWL 文件
g.serialize(destination="output.owl", format="xml")

print("RDF 图已保存为 output.owl 文件。")
代码解释
  1. 创建图:首先,我们创建一个新的 RDF 图。
  2. 定义命名空间:使用 URIRef 定义一个基础的命名空间,方便后续引用。
  3. 添加类和属性:通过 g.add() 方法添加 AthleteLocation 类,以及 BORN_IN 属性。
  4. 添加个体:为每个运动员和地点创建个体,并定义其标签和类型。
  5. 导出为 OWL:最后,将构建好的 RDF 图导出为 OWL 格式的 XML 文件。
注意事项
  • 确保 RDFLib 已正确安装,并与 Python 版本兼容。
  • 如果需要自定义更多复杂的关系和属性,可以在此基础上扩展代码。
选择合适的方法
  • 编程用户: 使用 owlready2RDFLib,适合需要自定义处理逻辑的场景。
  • 非编程用户: 使用 Protégé 或在线工具,适合需要直观操作的用户。
  • 临时处理: 在线工具提供快速解决方案,但功能可能有限。

根据你的具体需求和技术背景,可以选择最适合的方法来完成数据到 OWL 格式的转换。

4.2 其他

  • Protégé插件:在 Protégé 中导入 CSV 数据通常需要使用插件,因为 Protégé 默认并不直接支持 CSV
    格式的导入。这里就不在介绍。
  • 使用在线工具:查找网站

5. 在 Protégé 中加载 OWL 文件和处理

4.1 打开 Protégé

启动 Protégé 应用程序。

4.2 创建或打开本体

  • 新项目:点击 “File” > “New Project” 创建新本体。
  • 现有项目:点击 “File” > “Open Project” 打开已有本体。
    在这里插入图片描述

4.3 导入 OWL 文件

  1. 在 Protégé 菜单中,选择 File > Import…
  2. 选择刚创建的 OWL 文件并点击 Next
  3. 根据需要选择“完全导入”或“部分导入”。
  4. 点击 Finish 完成导入。

4.4 验证数据

在 Protégé 中浏览导入的类、个体和关系,确保数据正确显示并可管理。

4.5 后续步骤

  • 在 Protégé 中进一步修改本体结构、添加注释、定义属性等。
  • 根据需求设计新关系和类,增强本体语义。

通过这些步骤,你可以将 Neo4j 中的数据成功加载到 Protégé 中进行本体管理。

5. 案例总结

通过以上步骤,我们成功将 spaCyNeo4jProtégé 结合起来,构建了一个从文本处理到知识图谱的完整工作流。这种方法不仅提高了知识图谱构建的效率,还能够通过 Protégé 进行更加灵活的本体管理。

6. 不足与补充

  • 数据质量:依赖于输入文本的质量,错误或模糊的信息可能导致不准确的实体识别。
  • 扩展性:在处理复杂关系时,可能需要定义更多的关系和属性。
  • 性能:在大规模数据集上运行可能会影响性能,需优化数据处理逻辑。
问题解决方案
实体识别错误提高模型训练数据的质量
关系定义不足增加更多的关系定义和处理逻辑
性能问题使用异步处理或批量操作

这种集成流程为从自然语言处理到知识图谱构建提供了高效的工具链,使得信息的存储和检索变得更加方便。随着项目的发展,你可以根据实际需求扩展这个流程,处理更多复杂的数据和关系。

相关阅读

  • 专栏:知识图谱:从0到 ∞
  • 知识图谱入门——1:基本概念、为什么要用?核心步骤、常用工具与技术、应用场景
  • 知识图谱入门——2:技术体系基本概念:知识表示与建模、知识抽取与挖掘、知识存储与融合、知识推理与检索
  • 知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)
  • 知识图谱入门——6:Cypher 查询语言高级组合用法(查询链式操作、复杂路径匹配、条件逻辑、动态模式创建,以及通过事务控制和性能优化处理大规模数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/889305.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【深海王国】初中生也能画的电路板?目录合集

Hi٩(๑ ^ o ^ ๑)۶, 各位深海王国的同志们,早上下午晚上凌晨好呀~辛勤工作的你今天也辛苦啦 (o゜▽゜)o☆ 今天大都督为大家带来系列文章《初中生也能画的电路板》,帮你一周内快速入门PCB设计,手把手教你从元器件库添加、电路原理图绘制、…

初阶C语言-结构体

一.结构体的声明 1.结构体类型的声明 1.1结构的基础知识 结构是一些值的集合,这些值称为称为变量。结构的每个成员可以是不同类型的变量。 1.2结构的声明 struct tag //struct是结构体关键字,tag是结构体类型名称 { member - list;//成员变…

minio集群部署

最近接触到minio, 将本地集群部署,分别在ubuntu、centos stream9上进行了搭建,目前看里面的小坑不小,记录以下教程,以备忘、以供他人借鉴。 #### 准备 1、因新版本的minio要求,集群部署必须使用挂载非 roo…

AAA Mysql与redis的主从复制原理

一 :Mysql主从复制 重要的两个日志文件:bin log 和 relay log bin log:二进制日志(binnary log)以事件形式记录了对MySQL数据库执行更改的所有操作。 relay log:用来保存从节点I/O线程接受的bin log日志…

Java中System类和RunTime类的Api

目录 System 类 1)out 2)err 3)in 4)currentTimeMillis() 5)nanoTime() 6)arraycopy(Object 要从里面复制东西的数组, int 要从里面复制东西数组的索引起始位置, Object 获得复制元素的数组, int 获得复制元素数组的起始索引, int 要复制东西的个数) 7)gc() 8)exit(int status)…

51单片机的无线通信智能车库门【proteus仿真+程序+报告+原理图+演示视频】

1、主要功能 该系统由AT89C51/STC89C52单片机LCD1602显示模块红外传感器光照传感器时钟模块步进电机蓝牙按键、LED、蜂鸣器等模块构成。适用于智能车库自动门、无线控制车库门等相似项目。 可实现功能: 1、LCD1602实时显示北京时间和自动/手动模式,以及验证是否成…

【Arduino IDE安装】Arduino IDE的简介和安装详情

目录 🌞1. Arduino IDE概述 🌞2. Arduino IDE安装详情 🌍2.1 获取安装包 🌍2.2 安装详情 🌍2.3 配置中文 🌍2.4 其他配置 🌞1. Arduino IDE概述 Arduino IDE(Integrated Deve…

使用 Go 和 Gin 框架构建简单的用户和物品管理 Web 服务

使用 Go 和 Gin 框架构建简单的用户和物品管理 Web 服务 在本项目中,我们使用 Go 语言和 Gin 框架构建了一个简单的 Web 服务,能够管理用户和物品的信息。该服务实现了两个主要接口:根据用户 ID 获取用户名称,以及根据物品 ID 获…

模拟实现消息队列(基于SpringBoot实现)

项目代码 提要:此处的消息队列是仿照RabbitMQ实现(参数之类的),实现一些基本的操作:创建/销毁交互机(exchangeDeclare,exchangeDelete),队列(queueDeclare&a…

【电路笔记】-求和运算放大器

求和运算放大器 文章目录 求和运算放大器1、概述2、反相求和放大器3、同相求和放大器4、减法放大器5、应用5.1 音频混合器5.2 数模转换器 (DAC)6、总结1、概述 在我们之前有关运算放大器的大部分文章中,仅将一个输入应用于反相或非反相运算放大器的输入。在本文中,将讨论一种…

Python:条件分支 if 语句全讲解

Python:条件分支 if 语句全讲解 如果我拿出下面的代码,阁下该做何应对? if not reset_excuted and (terminated or truncated):... else:...---- 前言: 消化论文代码的时候看到这个东西直接大脑冻结,没想过会在这么…

5个免费ppt模板网站推荐!轻松搞定职场ppt制作!

每次过完小长假,可以明显地感觉到,2024这一年很快又要结束了,不知此刻的你有何感想呢?是满载而归,还是准备着手制作年终总结ppt或年度汇报ppt呢? 每当说到制作ppt,很多人的第一反应&#xff0c…

ElasticSearch备考 -- Multi match

一、题目 索引task有3个字段a、b、c,写一个查询去匹配这三个字段为mom,其中b的字段评分比a、c字段大一倍,将他们的分数相加作为最后的总分数 二、思考 通过题目要求对多个字段进行匹配查询,可以考虑multi match、bool query操作。…

vivo全新AI战略“蓝心智能”发布 原系统5亮相开发者大会

​10月10日,2024 vivo开发者大会在深圳国际会展中心举办,大会主题为“同心同行”。会上,vivo正式发布全新AI战略——“蓝心智能”,同时带来全面升级的自研蓝心大模型矩阵、原系统5(OriginOS 5)、蓝河操作系…

PHP中的HTTP请求:简化你的网络通信

在当今的网络应用开发中,PHP作为一种流行的服务器端脚本语言,经常需要与外部服务进行通信。这通常涉及到发送HTTP请求来获取或提交数据。幸运的是,PHP提供了多种方式来简化HTTP请求的过程,使得网络通信变得轻而易举。 PHP中的HTTP…

网络编程(17)——asio多线程模型IOThreadPool

十七、day17 之前我们介绍了IOServicePool的方式,一个IOServicePool开启n个线程和n个iocontext,每个线程内独立运行iocontext, 各个iocontext监听各自绑定的socket是否就绪,如果就绪就在各自线程里触发回调函数。为避免线程安全问题&#xf…

AVL树如何维持平衡

1.AVL树的特性 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种…

音频文件重采样 - python 实现

在处理音频文件的时候,经常会将原音频进行统一的重采样处理,设置为相同的采样率,本示例,就是将44100采样率的音频,重采样为16000. 安装对应的python 库:librosa 和 soundfile. pip install soundfile pip i…

详细解读“霸王面”战术

“霸王面”战术是指在没有得到雇主面试通知的情况下,强行加入面试,以此争取工作机会的求职策略。以下将以3000字左右的篇幅,通过生动形象的例子详细解释这一战术。 一、背景介绍 在当今竞争激烈的就业市场中,求职者需要经历网申…

国外火出圈儿的PM御用AI编程工具Bolt.new效果干不过国产的CodeFlying?号称全新定义全栈开发流程?

不知道大家最近有没有发现国外的很多AI都在挤破脑袋想去提升大模型的编程能力, 离我们最近的是上周Openai 发布的全新模型GPT-4o-Canvas, 拥有超强的代码编写能力。 另外还有LlamaCoder、Cursor、Claude artifacts、Replit... 光是今年一年就推出了好…