深度学习之贝叶斯分类器

贝叶斯分类器

1 图解极大似然估计

极大似然估计的原理,用一张图片来说明,如下图所示:

在这里插入图片描述

​ 例:有两个外形完全相同的箱子,1号箱有99只白球,1只黑球;2号箱有1只白球,99只黑球。在一次实验中,取出的是黑球,请问是从哪个箱子中取出的?

​ 一般的根据经验想法,会猜测这只黑球最像是从2号箱取出,此时描述的“最像”就有“最大似然”的意思,这种想法常称为“最大似然原理”。

2 极大似然估计原理

​ 总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。

​ 极大似然估计是建立在极大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。

​ 由于样本集中的样本都是独立同分布,可以只考虑一类样本集 D D D,来估计参数向量 θ ⃗ \vec\theta θ 。记已知的样本集为:
D = x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n D=\vec x_{1},\vec x_{2},...,\vec x_{n} D=x 1,x 2,...,x n
似然函数(likelihood function):联合概率密度函数 p ( D ∣ θ ⃗ ) p(D|\vec\theta ) p(Dθ )称为相对于 x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n \vec x_{1},\vec x_{2},...,\vec x_{n} x 1,x 2,...,x n θ ⃗ \vec\theta θ 的似然函数。
l ( θ ⃗ ) = p ( D ∣ θ ⃗ ) = p ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ∣ θ ⃗ ) = ∏ i = 1 n p ( x ⃗ i ∣ θ ⃗ ) l(\vec\theta )=p(D|\vec\theta ) =p(\vec x_{1},\vec x_{2},...,\vec x_{n}|\vec\theta )=\prod_{i=1}^{n}p(\vec x_{i}|\vec \theta ) l(θ )=p(Dθ )=p(x 1,x 2,...,x nθ )=i=1np(x iθ )
如果 θ ⃗ ^ \hat{\vec\theta} θ ^是参数空间中能使似然函数 l ( θ ⃗ ) l(\vec\theta) l(θ )最大的 θ ⃗ \vec\theta θ 值,则 θ ⃗ ^ \hat{\vec\theta} θ ^应该是“最可能”的参数值,那么 θ ⃗ ^ ​ \hat{\vec\theta}​ θ ^就是 θ \theta θ的极大似然估计量。它是样本集的函数,记作:
θ ⃗ ^ = d ( D ) = arg ⁡ max ⁡ θ ⃗ l ( θ ⃗ ) \hat{\vec\theta}=d(D)= \mathop {\arg \max}_{\vec\theta} l(\vec\theta ) θ ^=d(D)=argmaxθ l(θ )
θ ⃗ ^ ( x ⃗ 1 , x ⃗ 2 , . . . , x ⃗ n ) \hat{\vec\theta}(\vec x_{1},\vec x_{2},...,\vec x_{n}) θ ^(x 1,x 2,...,x n)称为极大似然函数估计值。

3 贝叶斯分类器基本原理

​ 贝叶斯决策论通过相关概率已知的情况下利用误判损失来选择最优的类别分类。
假设有 N N N种可能的分类标记,记为 Y = { c 1 , c 2 , . . . , c N } Y=\{c_1,c_2,...,c_N\} Y={c1,c2,...,cN},那对于样本 x \boldsymbol{x} x,它属于哪一类呢?

计算步骤如下:

step 1. 算出样本 x \boldsymbol{x} x属于第i个类的概率,即 P ( c i ∣ x ) ​ P(c_i|x)​ P(cix)

step 2. 通过比较所有的 P ( c i ∣ x ) P(c_i|\boldsymbol{x}) P(cix),得到样本 x \boldsymbol{x} x所属的最佳类别。

step 3. 将类别 c i c_i ci和样本 x \boldsymbol{x} x代入到贝叶斯公式中,得到:
P ( c i ∣ x ) = P ( x ∣ c i ) P ( c i ) P ( x ) . P(c_i|\boldsymbol{x})=\frac{P(\boldsymbol{x}|c_i)P(c_i)}{P(\boldsymbol{x})}. P(cix)=P(x)P(xci)P(ci).
​ 一般来说, P ( c i ) P(c_i) P(ci)为先验概率, P ( x ∣ c i ) P(\boldsymbol{x}|c_i) P(xci)为条件概率, P ( x ) P(\boldsymbol{x}) P(x)是用于归一化的证据因子。对于 P ( c i ) P(c_i) P(ci)可以通过训练样本中类别为 c i c_i ci的样本所占的比例进行估计;此外,由于只需要找出最大的 P ( x ∣ c i ) P(\boldsymbol{x}|c_i) P(xci),因此我们并不需要计算 P ( x ) P(\boldsymbol{x}) P(x)
​ 为了求解条件概率,基于不同假设提出了不同的方法,以下将介绍朴素贝叶斯分类器和半朴素贝叶斯分类器。

4 朴素贝叶斯分类器

​ 假设样本 x \boldsymbol{x} x包含 d d d个属性,即 x = { x 1 , x 2 , . . . , x d } \boldsymbol{x}=\{ x_1,x_2,...,x_d\} x={x1,x2,...,xd}。于是有:
P ( x ∣ c i ) = P ( x 1 , x 2 , ⋯   , x d ∣ c i ) P(\boldsymbol{x}|c_i)=P(x_1,x_2,\cdots,x_d|c_i) P(xci)=P(x1,x2,,xdci)
这个联合概率难以从有限的训练样本中直接估计得到。于是,朴素贝叶斯(Naive Bayesian,简称NB)采用了“属性条件独立性假设”:对已知类别,假设所有属性相互独立。于是有:
P ( x 1 , x 2 , ⋯   , x d ∣ c i ) = ∏ j = 1 d P ( x j ∣ c i ) P(x_1,x_2,\cdots,x_d|c_i)=\prod_{j=1}^d P(x_j|c_i) P(x1,x2,,xdci)=j=1dP(xjci)
这样的话,我们就可以很容易地推出相应的判定准则了:
h n b ( x ) = arg ⁡ max ⁡ c i ∈ Y P ( c i ) ∏ j = 1 d P ( x j ∣ c i ) h_{nb}(\boldsymbol{x})=\mathop{\arg \max}_{c_i\in Y} P(c_i)\prod_{j=1}^dP(x_j|c_i) hnb(x)=argmaxciYP(ci)j=1dP(xjci)
条件概率 P ( x j ∣ c i ) ​ P(x_j|c_i)​ P(xjci)的求解

如果 x j x_j xj是标签属性,那么我们可以通过计数的方法估计 P ( x j ∣ c i ) P(x_j|c_i) P(xjci)
P ( x j ∣ c i ) = P ( x j , c i ) P ( c i ) ≈ # ( x j , c i ) # ( c i ) P(x_j|c_i)=\frac{P(x_j,c_i)}{P(c_i)}\approx\frac{\#(x_j,c_i)}{\#(c_i)} P(xjci)=P(ci)P(xj,ci)#(ci)#(xj,ci)
其中, # ( x j , c i ) \#(x_j,c_i) #(xj,ci)表示在训练样本中 x j x_j xj c i c_{i} ci共同出现的次数。

如果 x j ​ x_j​ xj是数值属性,通常我们假设类别中 c i ​ c_{i}​ ci的所有样本第 j ​ j​ j个属性的值服从正态分布。我们首先估计这个分布的均值 μ ​ μ​ μ和方差 σ ​ σ​ σ,然后计算 x j ​ x_j​ xj在这个分布中的概率密度 P ( x j ∣ c i ) ​ P(x_j|c_i)​ P(xjci)

5 举例理解朴素贝叶斯分类器

使用经典的西瓜训练集如下:

编号色泽根蒂敲声纹理脐部触感密度含糖率好瓜
1青绿蜷缩浊响清晰凹陷硬滑0.6970.460
2乌黑蜷缩沉闷清晰凹陷硬滑0.7740.376
3乌黑蜷缩浊响清晰凹陷硬滑0.6340.264
4青绿蜷缩沉闷清晰凹陷硬滑0.6080.318
5浅白蜷缩浊响清晰凹陷硬滑0.5560.215
6青绿稍蜷浊响清晰稍凹软粘0.4030.237
7乌黑稍蜷浊响稍糊稍凹软粘0.4810.149
8乌黑稍蜷浊响清晰稍凹硬滑0.4370.211
9乌黑稍蜷沉闷稍糊稍凹硬滑0.6660.091
10青绿硬挺清脆清晰平坦软粘0.2430.267
11浅白硬挺清脆模糊平坦硬滑0.2450.057
12浅白蜷缩浊响模糊平坦软粘0.3430.099
13青绿稍蜷浊响稍糊凹陷硬滑0.6390.161
14浅白稍蜷沉闷稍糊凹陷硬滑0.6570.198
15乌黑稍蜷浊响清晰稍凹软粘0.3600.370
16浅白蜷缩浊响模糊平坦硬滑0.5930.042
17青绿蜷缩沉闷稍糊稍凹硬滑0.7190.103

对下面的测试例“测1”进行 分类:

编号色泽根蒂敲声纹理脐部触感密度含糖率好瓜
测1青绿蜷缩浊响清晰凹陷硬滑0.6970.460

首先,估计类先验概率 P ( c j ) P(c_j) P(cj),有
P ( 好瓜 = 是 ) = 8 17 = 0.471 P ( 好瓜 = 否 ) = 9 17 = 0.529 \begin{align} &P(好瓜=是)=\frac{8}{17}=0.471 \newline &P(好瓜=否)=\frac{9}{17}=0.529 \end{align} P(好瓜=)=178=0.471P(好瓜=)=179=0.529
然后,为每个属性估计条件概率(这里,对于连续属性,假定它们服从正态分布)
P 青绿 ∣ 是 = P (色泽 = 青绿 ∣ 好瓜 = 是) = 3 8 = 0.375 P_{青绿|是}=P(色泽=青绿|好瓜=是)=\frac{3}{8}=0.375 P青绿=P(色泽=青绿好瓜=是)=83=0.375

P 青绿 ∣ 否 = P (色泽 = 青绿 ∣ 好瓜 = 否) = 3 9 ≈ 0.333 P_{青绿|否}=P(色泽=青绿|好瓜=否)=\frac{3}{9}\approx0.333 P青绿=P(色泽=青绿好瓜=否)=930.333

P 蜷缩 ∣ 是 = P (根蒂 = 蜷缩 ∣ 好瓜 = 是) = 5 8 = 0.625 P_{蜷缩|是}=P(根蒂=蜷缩|好瓜=是)=\frac{5}{8}=0.625 P蜷缩=P(根蒂=蜷缩好瓜=是)=85=0.625

P 蜷缩 ∣ 否 = P (根蒂 = 蜷缩 ∣ 好瓜 = 否) = 3 9 = 0.333 P_{蜷缩|否}=P(根蒂=蜷缩|好瓜=否)=\frac{3}{9}=0.333 P蜷缩=P(根蒂=蜷缩好瓜=否)=93=0.333

P 浊响 ∣ 是 = P (敲声 = 浊响 ∣ 好瓜 = 是) = 6 8 = 0.750 P_{浊响|是}=P(敲声=浊响|好瓜=是)=\frac{6}{8}=0.750 P浊响=P(敲声=浊响好瓜=是)=86=0.750

P 浊响 ∣ 否 = P (敲声 = 浊响 ∣ 好瓜 = 否) = 4 9 ≈ 0.444 P_{浊响|否}=P(敲声=浊响|好瓜=否)=\frac{4}{9}\approx 0.444 P浊响=P(敲声=浊响好瓜=否)=940.444

P 清晰 ∣ 是 = P (纹理 = 清晰 ∣ 好瓜 = 是) = 7 8 = 0.875 P_{清晰|是}=P(纹理=清晰|好瓜=是)=\frac{7}{8}= 0.875 P清晰=P(纹理=清晰好瓜=是)=87=0.875

P 清晰 ∣ 否 = P (纹理 = 清晰 ∣ 好瓜 = 否) = 2 9 ≈ 0.222 P_{清晰|否}=P(纹理=清晰|好瓜=否)=\frac{2}{9}\approx 0.222 P清晰=P(纹理=清晰好瓜=否)=920.222

P 凹陷 ∣ 是 = P (脐部 = 凹陷 ∣ 好瓜 = 是) = 6 8 = 0.750 P_{凹陷|是}=P(脐部=凹陷|好瓜=是)=\frac{6}{8}= 0.750 P凹陷=P(脐部=凹陷好瓜=是)=86=0.750

P 凹陷 ∣ 否 = P (脐部 = 凹陷 ∣ 好瓜 = 否) = 2 9 ≈ 0.222 P_{凹陷|否}=P(脐部=凹陷|好瓜=否)=\frac{2}{9} \approx 0.222 P凹陷=P(脐部=凹陷好瓜=否)=920.222

P 硬滑 ∣ 是 = P (触感 = 硬滑 ∣ 好瓜 = 是) = 6 8 = 0.750 P_{硬滑|是}=P(触感=硬滑|好瓜=是)=\frac{6}{8}= 0.750 P硬滑=P(触感=硬滑好瓜=是)=86=0.750

P 硬滑 ∣ 否 = P (触感 = 硬滑 ∣ 好瓜 = 否) = 6 9 ≈ 0.667 P_{硬滑|否}=P(触感=硬滑|好瓜=否)=\frac{6}{9} \approx 0.667 P硬滑=P(触感=硬滑好瓜=否)=960.667

ρ 密度: 0.697 ∣ 是 = ρ (密度 = 0.697 ∣ 好瓜 = 是) = 1 2 π × 0.129 e x p ( − ( 0.697 − 0.574 ) 2 2 × 0.12 9 2 ) ≈ 1.959 \begin{aligned} \rho_{密度:0.697|是}&=\rho(密度=0.697|好瓜=是)\\&=\frac{1}{\sqrt{2 \pi}\times0.129}exp\left( -\frac{(0.697-0.574)^2}{2\times0.129^2}\right) \approx 1.959 \end{aligned} ρ密度:0.697∣=ρ(密度=0.697∣好瓜=是)=2π ×0.1291exp(2×0.1292(0.6970.574)2)1.959

ρ 密度: 0.697 ∣ 否 = ρ (密度 = 0.697 ∣ 好瓜 = 否) = 1 2 π × 0.195 e x p ( − ( 0.697 − 0.496 ) 2 2 × 0.19 5 2 ) ≈ 1.203 \begin{aligned} \rho_{密度:0.697|否}&=\rho(密度=0.697|好瓜=否)\\&=\frac{1}{\sqrt{2 \pi}\times0.195}exp\left( -\frac{(0.697-0.496)^2}{2\times0.195^2}\right) \approx 1.203 \end{aligned} ρ密度:0.697∣=ρ(密度=0.697∣好瓜=否)=2π ×0.1951exp(2×0.1952(0.6970.496)2)1.203

ρ 含糖: 0.460 ∣ 是 = ρ (密度 = 0.460 ∣ 好瓜 = 是) = 1 2 π × 0.101 e x p ( − ( 0.460 − 0.279 ) 2 2 × 0.10 1 2 ) ≈ 0.788 \begin{aligned} \rho_{含糖:0.460|是}&=\rho(密度=0.460|好瓜=是)\\&=\frac{1}{\sqrt{2 \pi}\times0.101}exp\left( -\frac{(0.460-0.279)^2}{2\times0.101^2}\right) \approx 0.788 \end{aligned} ρ含糖:0.460∣=ρ(密度=0.460∣好瓜=是)=2π ×0.1011exp(2×0.1012(0.4600.279)2)0.788

ρ 含糖: 0.460 ∣ 否 = ρ (密度 = 0.460 ∣ 好瓜 = 是) = 1 2 π × 0.108 e x p ( − ( 0.460 − 0.154 ) 2 2 × 0.10 8 2 ) ≈ 0.066 \begin{aligned} \rho_{含糖:0.460|否}&=\rho(密度=0.460|好瓜=是)\\&=\frac{1}{\sqrt{2 \pi}\times0.108}exp\left( -\frac{(0.460-0.154)^2}{2\times0.108^2}\right) \approx 0.066 \end{aligned} ρ含糖:0.460∣=ρ(密度=0.460∣好瓜=是)=2π ×0.1081exp(2×0.1082(0.4600.154)2)0.066

于是有
P ( 好瓜 = 是 ) × P 青绿 ∣ 是 × P 蜷缩 ∣ 是 × P 浊响 ∣ 是 × P 清晰 ∣ 是 × P 凹陷 ∣ 是 × P 硬滑 ∣ 是 × p 密度: 0.697 ∣ 是 × p 含糖: 0.460 ∣ 是 ≈ 0.063 P ( 好瓜 = 否 ) × P 青绿 ∣ 否 × P 蜷缩 ∣ 否 × P 浊响 ∣ 否 × P 清晰 ∣ 否 × P 凹陷 ∣ 否 × P 硬滑 ∣ 否 × p 密度: 0.697 ∣ 否 × p 含糖: 0.460 ∣ 否 ≈ 6.80 × 1 0 − 5 \begin{align} P(&好瓜=是)\times P_{青绿|是} \times P_{蜷缩|是} \times P_{浊响|是} \times P_{清晰|是} \times P_{凹陷|是}\newline &\times P_{硬滑|是} \times p_{密度:0.697|是} \times p_{含糖:0.460|是} \approx 0.063 \newline\newline P(&好瓜=否)\times P_{青绿|否} \times P_{蜷缩|否} \times P_{浊响|否} \times P_{清晰|否} \times P_{凹陷|否}\newline &\times P_{硬滑|否} \times p_{密度:0.697|否} \times p_{含糖:0.460|否} \approx 6.80\times 10^{-5} \end{align} P(P(好瓜=)×P青绿×P蜷缩×P浊响×P清晰×P凹陷×P硬滑×p密度:0.697∣×p含糖:0.460∣0.063好瓜=)×P青绿×P蜷缩×P浊响×P清晰×P凹陷×P硬滑×p密度:0.697∣×p含糖:0.460∣6.80×105

由于 0.063 > 6.80 × 1 0 − 5 0.063>6.80\times 10^{-5} 0.063>6.80×105,因此,朴素贝叶斯分类器将测试样本“测1”判别为“好瓜”。

6 半朴素贝叶斯分类器

​ 朴素贝叶斯采用了“属性条件独立性假设”,半朴素贝叶斯分类器的基本想法是适当考虑一部分属性间的相互依赖信息。独依赖估计(One-Dependence Estimator,简称ODE)是半朴素贝叶斯分类器最常用的一种策略。顾名思义,独依赖是假设每个属性在类别之外最多依赖一个其他属性,即:
P ( x ∣ c i ) = ∏ j = 1 d P ( x j ∣ c i , p a j ) P(\boldsymbol{x}|c_i)=\prod_{j=1}^d P(x_j|c_i,{\rm pa}_j) P(xci)=j=1dP(xjci,paj)
其中 p a j pa_j paj为属性 x i x_i xi所依赖的属性,成为 x i x_i xi的父属性。假设父属性 p a j pa_j paj已知,那么可以使用下面的公式估计 P ( x j ∣ c i , p a j ) P(x_j|c_i,{\rm pa}_j) P(xjci,paj)
P ( x j ∣ c i , p a j ) = P ( x j , c i , p a j ) P ( c i , p a j ) P(x_j|c_i,{\rm pa}_j)=\frac{P(x_j,c_i,{\rm pa}_j)}{P(c_i,{\rm pa}_j)} P(xjci,paj)=P(ci,paj)P(xj,ci,paj)

有任何其他有关人工智能学习或GPT共享号独享号问题,欢迎私聊咨询

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/888283.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode刷题日记之二叉树(六)

目录 前言二叉搜索树中的众数二叉树的最近公共祖先二叉搜索树的最近公共祖先总结 前言 又是学习LeetCode二叉树的新一天,今天还是接着学习一下二叉搜索树的内容,希望博主记录的内容能够对大家有所帮助 ,一起加油吧朋友们!&#x…

LeetCode讲解篇之2466. 统计构造好字符串的方案数

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 组成长度为i的字符串个数 组成长度为i - zero的字符串个数 组成长度为i - one的字符串个数 设数组f中i号元素的值为组成长度为i的字符串个数 则状态转移方程为f[i] f[i - zero] f[i - one],其中需…

MySQL中NULL值是否会影响索引的使用

MySQL中NULL值是否会影响索引的使用 为何写这一篇文章 🐭🐭在面试的时候被问到NULL值是否会走索引的时候,感到有点不理解,于是事后就有了这篇文章 问题: 为name建立索引,name可以为空select * from user …

使用标签实现MyBatis的基础操作

目录 前言 1.配置MyBatis⽇志打印 2.参数传递 2.1 #{} 和 ${}区别 2.2传递多个参数 3.增删改查 3.1增(Insert) 3.2删(Delete) 3.3改(Update) 3.4查(Select) 前言 接下来我们会使用的数据表如下: 对应的实体类为:UserInfoMapper 所有的准备工作都…

Nginx08-反向代理

零、文章目录 Nginx08-反向代理 1、概述 关于正向代理和反向代理,我们在前面已经介绍过了,简而言之就是正向代理代理的对象是客户端,反向代理代理的是服务端,这是两者之间最大的区别。 Nginx即可以实现正向代理,也可…

Python进阶--正则表达式

目录 1. 基础匹配 2. 元字符匹配 1. 基础匹配 正则表达式,又称规则表达式(Regular Expression),是使用单个字符串来描述、匹配某个句法规则的字符串,常被用来检索、替换那些符合某个模式(规则&#xff…

爱心曲线公式大全

local r a*((math.sin(angle) * math.sqrt(math.abs(math.cos(angle)))) / (math.sin(angle) 1.4142) - 2 * math.sin(angle) 2) local x r * math.cos(angle) -- 计算对应的x值 local z r * math.sin(angle) 1.5*a - --曲线公式绘画 local function generateParabola()…

【异常记录Vue_20241006】使用TagsView后控制台报错

报错截图 报错原因 未将TagsView所依赖的组件permission组件注册到store中,导致TagsView组件在找permission.routes时没找到 解决方法:store注册相应组件

应用界面编写(十四)

一. 介绍QT 接下来我们会在Qt Creater来进行界面的编写,并且在荔枝派中运行。那么我们有必要了解一下Qt到底是什么呢?它又为什么可以在荔枝派中运行呢? QT是一个跨平台的应用程序和用户界面框架,用于开发具有图形界面的软件。而…

【AI知识点】残差网络(ResNet,Residual Networks)

残差网络(ResNet,Residual Networks) 是由微软研究院的何凯明等人在 2015 年提出的一种深度神经网络架构,在深度学习领域取得了巨大的成功。它通过引入残差连接(Residual Connection) 解决了深层神经网络中…

Linux--IO模型与高级IO重要概念

什么是IO? IO是指计算机系统与外部世界进行数据交换的过程。在计算机中,IO通常用于与外部设备通信,这些设备包括键盘、鼠标、打印机、显示器、网络等。通过IO操作,计算机系统可以接收来自外部设备的输入数据,也可以将…

CSS圆角

在制作网页的过程中,有时我们可能需要实现圆角的效果,以前的做法是通过切图(将设计稿切成便于制作成页面的图片),使用多个背景图像来实现圆角。在 CSS3 出现之后就不需要这么麻烦了,CSS3 中提供了一系列属性…

代数结构基础 - 离散数学系列(八)

目录 1. 群(Group) 群的定义 群的示例 2. 环(Ring) 环的定义 环的示例 3. 域(Field) 域的定义 域的示例 域在密码学中的应用 4. 实际应用场景 1. 对称性与加密 2. 误差检测与纠正 3. 数据编码…

jetlinks物联网平台学习5:dtu设备接入及温度报警场景联动

dtu设备接入及温度报警场景联动 1、平台端配置1、新建协议2、新建网络组件3、设备接入网关配置4、新增产品5、导入产品物模型6、新增设备7、场景联动配置7.1、触发规则7.2、触发条件7.3、执行动作 2、平台端验证场景联动 1、平台端配置 下载三个文件 https://hanta.yuque.com…

40条经典ChatGPT论文指令,圈定选题和进行论文构思

目录 1、用ChatGPT圈定选题范围2、用ChatGPT生成研究方法和思路3、用ChatGPT扩展论文观点和论证4、用ChatGPT辅助论文结构设计5、如何直接使用ChatGPT4o、o1、OpenAI Canvas6、OpenAI Canvas增强了啥?7、编程功能增强 👇 ChatGPT o1网页入口在文末&#…

如何让算法拥有“记忆”?一文读懂记忆化搜索

✨✨✨学习的道路很枯燥,希望我们能并肩走下来! 文章目录 目录 文章目录 前言 一 什么是记忆化搜索 二 相关题目练习 2.1 斐波那契数(详解记忆化搜索) ​编辑 解法一(递归): 解法二(记…

免费高可用软件

高可用软件是指那些能够提供高可用性、高可靠性的软件,它们在各种应用场景下都能确保系统的稳定运行。以下是四款免费的高可用软件,它们在不同领域都表现出色,能够满足各种高可用性需求。 一、PanguHA PanguHA是一款专为Windows平台设计的双…

【吊打面试官系列-MySQL面试题】试述视图的优点?

大家好,我是锋哥。今天分享关于【试述视图的优点?】面试题,希望对大家有帮助; 试述视图的优点? (1) 视图能够简化用户的操作 (2) 视图使用户能以多种角度看待同一数据; (3) 视图为数据库提供了一定程度的…

一、机器学习算法与实践_06迭代法和KMeans、线性回归、逻辑回归算法笔记

0 迭代法 迭代法不仅是机器学习、深度学习的核心,也是整个人工智能领域的重要概念,其对于算法的设计和实现至关重要 0.1 适合场景 对于不能一次搞定的问题,将其分成多步来解决,逐步逼近解决方案 0.2 典型应用 KMeans 聚类算法…

基于SpringBoot博物馆游客预约系统【附源码】

基于SpringBoot博物馆游客预约系统 效果如下: 主页面 注册界面 展品信息界面 论坛交流界面 后台登陆界面 后台主界面 参观预约界面 留言板界面 研究背景 随着现代社会的快速发展和人们生活水平的提高,文化生活需求也在日益增加。博物馆作为传承文化、…