[C++]使用纯opencv部署yolov8-cls图像分类onnx模型

【算法介绍】

使用纯OpenCV部署YOLOv8-cls图像分类ONNX模型涉及几个关键步骤。

首先,你需要将YOLOv8-cls模型从PyTorch格式转换为ONNX格式,这是为了确保模型在不同深度学习框架之间的互操作性。这个转换过程通常是通过ultralytics框架中的model.export方法完成的,你需要指定输出格式为ONNX,并设置输入图像的尺寸和opset版本。

接下来,配置OpenCV环境以支持ONNX模型的读取和推理。你需要确保OpenCV的版本至少为4.7.0,因为该版本及以上提供了对ONNX模型的全面支持。然后,你可以使用OpenCV的dnn模块中的readNetFromONNX函数来加载ONNX模型。

加载模型后,你可以对输入图像进行预处理,如调整图像大小和归一化,然后使用模型进行推理。推理的结果是一个包含分类信息的数组,你需要根据这些信息来确定图像的分类结果。

最后,你可以将分类结果以文本或图形的形式展示在图像上,或者使用其他方式进行处理。

使用纯OpenCV部署YOLOv8-cls图像分类ONNX模型的优势在于,OpenCV是一个广泛使用的计算机视觉库,它提供了丰富的图像处理和分析功能,同时支持跨平台和设备部署。这使得YOLOv8-cls模型能够在不同的环境中实现高效和准确的图像分类。

【效果展示】

【实现部分代码】

#include <iostream>
#include<opencv2/opencv.hpp>
#include<math.h>
#include<time.h>
#include "yolov8_cls.h"
using namespace std;
using namespace cv;
using namespace dnn;

int main(int argc,char* argv[]) {
	
	
    if(argc==1)
	{
		cout<<"please input the image path"<<endl;
		return 0;
	}
	
	string img_path = argv[1];
	string cls_model_path = "yolov8s-cls.onnx";
	Mat img = imread(img_path);
	Yolov8ClsOnnx cls_net;
	cls_net.LoadWeights(cls_model_path);
	auto result = cls_net.Inference(img);
	cout << result.class_name<<"===>"<<std::to_string(result.confidence) << endl;
	getchar();
	return 0;
}


【测试环境】

vs2019

cmake==3.24.3

opencv==4.8.0

【运行步骤】

通过cmake编译出exe后,执行

yolov8-cls.exe 【图片路径】即可

【完整源码下载】

https://download.csdn.net/download/FL1623863129/89853564

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/888188.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux TFTP服务器搭建

话得多说 先水一波字 TFTP&#xff08;Trivial File Transfer Protocol&#xff09;是一种简单的文件传输协议。它用于在计算机网络中传输文件&#xff0c;特别适用于在网络设备&#xff08;如开发板和Linux系统下&#xff09;代码调试等操作。TFTP使用UDP&#xff08;User Da…

SpringBoot教程(二十四) | SpringBoot实现分布式定时任务之Quartz

SpringBoot教程&#xff08;二十四&#xff09; | SpringBoot实现分布式定时任务之Quartz 简介适用场景Quartz核心概念Quartz 存储方式Quartz 版本类型引入相关依赖开始集成方式一&#xff1a;内存方式(MEMORY)存储实现定时任务1. 定义任务类2. 定义任务描述及创建任务触发器3.…

C语言的柔性数组

目录 柔性数组1.柔性数组的特点&#xff1a;2.柔性数组的使用3.柔性数组的优势 柔性数组 也许你从来没有听说过柔性数组&#xff08;flexible array&#xff09;这个概念&#xff0c;但是它确实是存在的。 C99 中&#xff0c;结构体中的最后⼀个元素允许是未知⼤⼩的数组&…

程序员日志之DNF手游女鬼剑异界套选择思路

目录 传送门正文日志1、概要2、剑宗3、剑豪4、剑魔5、暗帝 传送门 SpringMVC的源码解析&#xff08;精品&#xff09; Spring6的源码解析&#xff08;精品&#xff09; SpringBoot3框架&#xff08;精品&#xff09; MyBatis框架&#xff08;精品&#xff09; MyBatis-Plus Sp…

STM32 OLED

文章目录 前言一、OLED是什么&#xff1f;二、使用步骤1.复制 OLED.C .H文件1.1 遇到问题 2.统一风格3.主函数引用头文件3.1 oled.h 提供了什么函数 4.介绍显示一个字符的函数5. 显示十进制函数的讲解 三、使用注意事项3.1 配置符合自己的引脚3.2 花屏总结 前言 提示&#xff…

Elasticsearch要点简记

Elasticsearch要点简记 1、ES概述2、基础概念&#xff08;1&#xff09;索引、文档、字段&#xff08;2&#xff09;映射&#xff08;3&#xff09;DSL 3、架构原理4、索引字段的数据类型5、ES的三种分页方式&#xff08;1&#xff09;深度分页&#xff08;fromsize&#xff09…

ndb9300public-ndb2excel简介

1 引言 ndb9300是一个自己定义的机载导航数据库劳作&#xff08;不敢称为项目&#xff09;代号&#xff0c;其中3表示是第3种数据库。 多年前&#xff0c;对在役民航客机中的某型机载导航数据库的二进制文件进行分析&#xff0c;弄明白它的数据结构后做了几个工具&#xff0c…

【Flutter】- 核心语法

文章目录 知识回顾前言源码分析1. 有状态组件2. 无状态组件3. 组件生命周期4. 常用组件Container组件Text组件Image组件布局组件row colum stack expandedElevntButton按钮拓展知识总结知识回顾 【Flutter】- 基础语法 前言 Flutter是以组件化的思想构建客户端页面的,类似于…

算法与程序课程设计——观光铁路

观光铁路 一、任务 跳蚤国正在大力发展旅游业&#xff0c;每个城市都被打造成了旅游景点。 许多跳蚤想去其他城市旅游&#xff0c;但是由于跳得比较慢&#xff0c;它们的愿望难以实现。这时&#xff0c;小C听说有一种叫做火车的交通工具&#xff0c;在铁路上跑得很快&#x…

Kubernetes proxy 命令与集群资源交互中起的作用

关于 Kubernetes 中的 kubectl proxy 命令&#xff0c;理解它的作用有助于更深入地掌握 Kubernetes 如何管理集群内的资源&#xff0c;以及开发和调试时如何通过代理来简化交互。kubectl proxy 提供了一种安全且方便的方式来访问 Kubernetes API 服务器&#xff0c;尤其是在调试…

今日指数day8实战补充(上)

1.用户管理 1.多条件综合查询 1.1 多条件综合查询接口说明 1&#xff09;原型效果 2&#xff09;接口说明 功能描述&#xff1a;多条件综合查询用户分页信息&#xff0c;条件包含&#xff1a;分页信息 用户创建日期范围 服务路径&#xff1a;/api/users 服务方法&#xff1…

用Manim简单解释奇异值分解(SVD)和图像处理方面的应

一&#xff0c;介绍 奇异值分解&#xff08;SVD&#xff09;是一种重要的矩阵分解技术&#xff0c;在统计学、信号处理和机器学习等领域有广泛应用。对于任意给定的矩阵 A&#xff08;可以是任意形状的矩阵&#xff09;&#xff0c;SVD将其分解为三个特定的矩阵的乘积&#x…

idea2024设置中文

今天下载idea2024.2版本&#xff0c;发现已经装过中文插件&#xff0c;但是还是不显示中文&#xff0c;找了半天原来还需要设置中文选项 方案一 点击文件 -> 关闭项目 点击自定义 -> 选择语言 方案二 点击文件 -> 设置 外观与行为 -> 系统设置 -> 语言和地区…

LSTM时序预测 | Python实现LSTM长短期记忆神经网络时间序列预测

本文内容&#xff1a;Python实现LSTM长短期记忆神经网络时间序列预测&#xff0c;使用的数据集为AirPassengers 目录 数据集简介 1.步骤一 2.步骤二 3.步骤三 4.步骤四 数据集简介 AirPassengers 数据集的来源可以追溯到经典的统计和时间序列分析文献。原始数据集由 Box,…

增强分析:新时代的数据洞察工具

随着数据科学和人工智能的迅猛发展&#xff0c;分析数据的方式也发生了显著的变化。增强分析&#xff08;Augmented Analytics&#xff09;是近年来涌现出的新概念&#xff0c;它将人工智能&#xff08;AI&#xff09;、机器学习&#xff08;ML&#xff09;和自然语言处理&…

HarmonyOS NEXT - 表单录入组件封装(TextInput)

demo 地址: https://github.com/iotjin/JhHarmonyDemo 组件对应代码实现地址 代码不定时更新&#xff0c;请前往github查看最新代码 HarmonyOS NEXT - 表单录入组件封装&#xff08;TextInput&#xff09; 序JhFormInputCellJhFormSelectCellJhLoginTextField 序 鸿蒙next中有两…

java 的三种IO模型(BIO、NIO、AIO)

java 的三种IO模型&#xff08;BIO、NIO、AIO&#xff09; 一、BIO 阻塞式 IO&#xff08;Blocking IO&#xff09;1.1、BIO 工作机制1.2、BIO 实现单发单收1.3、BIO 实现多发多收1.4、BIO 实现客户端服务端多对一1.5、BIO 模式下的端口转发思想 二、NIO 同步非阻塞式 IO&#…

Android15车载音频之Virtualbox中QACT实时调试(八十八)

简介: CSDN博客专家、《Android系统多媒体进阶实战》一书作者 新书发布:《Android系统多媒体进阶实战》🚀 优质专栏: Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏: 多媒体系统工程师系列【原创干货持续更新中……】🚀 优质视频课程:AAOS车载系统+…

Pikachu- Over Permission-垂直越权

以admin 账号登陆&#xff0c;添加一个用户&#xff1b; 把添加用户的这个请求发送到 repeater&#xff1b; 退出admin&#xff0c;使用普通用户pikachu登陆&#xff1b; 只有查看权限&#xff1b; 使用pikachu 用户的认证信息&#xff0c;替换repeater处管理员创建用户请求的…

六、索引的数据结构

文章目录 1. 为什么使用索引2. 索引及其优缺点2.1 索引概述2.2 优点2.3 缺点3. InnoDB中索引的推演3.1 索引之前的查找3.1.1 在一个页中的查找3.1.2 在很多页中查找3.2 设计索引3.2.1 一个简单的索引设计方案3.2.2 InnoDB中的索引方案3.3 常见索引概念3.3.1 聚簇索引3.3.2 二级…