101. 对称二叉树【 力扣(LeetCode) 】

文章目录

  • 零、原题链接
  • 一、题目描述
  • 二、测试用例
  • 三、解题思路
    • 3.1 递归
    • 3.2 迭代
  • 四、参考代码
    • 4.1 递归
    • 4.2 迭代

零、原题链接


101. 对称二叉树

一、题目描述

给你一个二叉树的根节点 root , 检查它是否轴对称。

进阶:你可以运用递归和迭代两种方法解决这个问题吗?

二、测试用例

示例 1:

在这里插入图片描述

输入:root = [1,2,2,3,4,4,3]
输出:true

示例 2:

在这里插入图片描述

输入:root = [1,2,2,null,3,null,3]
输出:false

提示:

树中节点数目在范围 [1, 1000]-100 <= Node.val <= 100

三、解题思路

3.1 递归

  1. 基本思路:
      递归,比较对称位置的结点是否相同即可
  2. 具体思路:
    • 左子树结点和右子树结点有一个为空,另一个非空,则不轴对称;
    • 两个都是空,则轴对称;
    • 两个都不为空:
      • 值相同,则判断 左子树的左子树右子树的右子树 是否轴对称 且 左子树的右子树右子树的左子树 是否轴对称;
      • 值不同,则不是轴对称;

3.2 迭代

  1. 基本思路:
      迭代,用栈实现递归,还是比较对称位置的结点是否相同即可
  2. 具体思路:
    • 将左右子树入栈;
    • 只要栈非空:
      • 弹出两个元素,比较是否相同:
        • 相同,非空的话,将他们的左右子树间隔入栈,且顺序相反,即一个左右,一个右左;
        • 不相同,则不是轴对称;
    • 栈空,则表示是轴对称;

四、参考代码

4.1 递归

时间复杂度: O ( n ) \Omicron(n) O(n)
空间复杂度: O ( l o g    n ) \Omicron(log\;n) O(logn)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    bool isSymmetric(TreeNode* left, TreeNode* right) {
        if ((left == nullptr) ^ (right == nullptr))
            return false;
        else if (left == nullptr)
            return true;
        else {
            if (left->val == right->val)
                return isSymmetric(left->left, right->right) &&
                       isSymmetric(left->right, right->left);
            else
                return false;
        }
    }
    bool isSymmetric(TreeNode* root) {
        return isSymmetric(root->left, root->right);
    }
};

4.2 迭代

时间复杂度: O ( n ) \Omicron(n) O(n)
空间复杂度: O ( l o g    n ) \Omicron(log\;n) O(logn)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
 * right(right) {}
 * };
 */
class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        vector<TreeNode*> stack;
        stack.push_back(root->left);
        stack.push_back(root->right);

        while (!stack.empty()) {
            TreeNode* left = stack.back();
            stack.pop_back();
            TreeNode* right = stack.back();
            stack.pop_back();

            if (left != nullptr && right != nullptr) {
                if (left->val == right->val) {
                    stack.push_back(left->left);
                    stack.push_back(right->right);
                    stack.push_back(left->right);
                    stack.push_back(right->left);
                } else {
                    return false;
                }
            } else if (left != nullptr || right != nullptr) {
                return false;
            }
        }

        return true;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/888010.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】使用 JDBC 连接数据库

文章目录 前言1. 认识 JDBC1.1 概念1.2 好处 2. 使用 JDBC2.1 安装数据驱动包2.2 把 jar 包导入到项目中2.3 代码编写2.4 测试结果 3. 代码优化4. 源码展示结语 前言 在 MySQL 系列中&#xff0c;我们介绍了很多内容&#xff0c;包括但不限于建库建表&#xff0c;增删查改等等…

微信步数C++

题目&#xff1a; 样例解释&#xff1a; 【样例 #1 解释】 从 (1,1) 出发将走 2 步&#xff0c;从 (1,2) 出发将走 4 步&#xff0c;从 (1,3) 出发将走 4 步。 从 (2,1) 出发将走 2 步&#xff0c;从 (2,2) 出发将走 3 步&#xff0c;从 (2,3) 出发将走 3 步。 从 (3,1) 出发将…

基于基于微信小程序的社区订餐系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…

ElasticSearch备考 -- Async search

一、题目 通过异步方式查询earthquakes索引下Magnitude大于5的数据 二、思考 正常的查询大家可能会用的多一点&#xff0c;这种异步查询为数据量比较大的查询在后台执行&#xff0c;不用同步等待结果&#xff0c;待执行完成在获取结果。 三、解题 Step 1、准备基础数据 # D…

Sping源码:三级缓存

目录 一、概念1、三级缓存的作用2、循环依赖的含义 二、代码1、代码下载2、文件功能介绍3、源码分析3.1、找到获取A对象的位置&#xff0c;打断点进行debug操作3.2、一步步找到在A对象中注入B对象的位置3.3、一步步找到B对象注入A对象的位置3.4、往下找到通过三级缓存解决循环依…

YouTube音视频合并批处理基于 FFmpeg的

专门针对YouTube高品质分享处理的&#xff0c;将音频和视频合并。 首先下载ffmpeg.exe网上随便下载。 echo off title YouTube 音视频合并 20241004 echo 作者&#xff1a;xiaoshen echo 网站&#xff1a;http://www.xiaoshen.cn/ echo. set /p audio请将【音频】文件拖拽到此…

六、Java 基础语法(下)

一、变量 1、变量的定义与使用 变量就是内存中的存储空间&#xff0c;空间中存储着经常发生改变的数据变量定义格式&#xff1a; 数据类型 变量名 数据值使用时根据变量名使用举例如下&#xff0c;上面是代码&#xff0c;下面是输出 2、变量的注意事项 变量名不允许重复…

Vue入门-指令学习-v-show和v-if

v-show&#xff1a; 作用&#xff1a;控制元素的显示隐藏 语法&#xff1a;v-show"表达式" 表达式值true显示&#xff0c;false隐藏 v-if 作用&#xff1a;控制元素的显示隐藏&#xff08;条件渲染&#xff09; 语法&#xff1a; vif"表达式" 表达式tr…

字节跳动收购Oladance耳机:强化音频技术,加速VR/AR生态布局

字节跳动收购Oladance耳机&#xff1a;加码VR/AR领域布局 近日&#xff0c;字节跳动宣布已完成对开放式耳机品牌Oladance的收购&#xff0c;实现了对该品牌的100%控股。这一收购标志着字节跳动在AI硬件领域的进一步扩展和深化&#xff0c;特别是对其VR/AR领域布局的重要加码。 …

STM32使用Keil5 在运行过程中不复位进入调试模式

一、选择Options for Target进入设置 二、选择所使用的调试器&#xff0c;这里以ST-Link为例。取消勾选Load Application at Startup 可以在进入调试模式的时候不会从新加载程序&#xff01;从而不破坏现场 三、点击Setting进入 四、取消勾选Reset after Connect 使得调试器连接…

DotNetty ChannelRead接收数据为null

问题&#xff1a;C#使用Dotnetty和Java netty服务器通讯&#xff0c;结果能正确发送数据到服务器&#xff0c;却始终接收不到服务器返回的数据。 解决&#xff1a;一定一定要注意服务器和客户端使用的编码一定要完全一样才行 我先前在客户端添加了StringDecoder,服务器却没有…

malloc源码分析之 ----- 你想要啥chunk

文章目录 malloc源码分析之 ----- 你想要啥chunktcachefastbinsmall binunsorted binbin处理top malloc源码分析之 ----- 你想要啥chunk tcache malloc源码&#xff0c;这里以glibc-2.29为例&#xff1a; void * __libc_malloc (size_t bytes) {mstate ar_ptr;void *victim;vo…

Windows安装Linux子系统报错:WslRegisterDistribution failed with error: 0x8007019e

WslRegisterDistribution failed with error: 0x8007019e 报错截图如下图&#xff1a; 该处是由于没有安装Linux内核&#xff0c;因此需要安装。可前往官网查看详情&#xff1a;https://aka.ms/wslinstall 需要解决该问题&#xff0c;可参照官网方法&#xff08;我没试过官网…

【优选算法之队列+宽搜/优先级队列】No.14--- 经典队列+宽搜/优先级队列算法

文章目录 前言一、队列宽搜示例&#xff1a;1.1 N 叉树的层序遍历1.2 ⼆叉树的锯⻮形层序遍历1.3 ⼆叉树最⼤宽度1.4 在每个树⾏中找最⼤值 二、优先级队列&#xff08;堆&#xff09;示例&#xff1a;2.1 最后⼀块⽯头的重量2.2 数据流中的第 K ⼤元素2.3 前 K 个⾼频单词2.4 …

Android车载——VehicleHal初始化(Android 11)

1 概述 VehicleHal是AOSP中车辆服务相关的hal层服务。它主要定义了与汽车硬件交互的标准化接口和属性管理&#xff0c;是一个独立的进程。 2 进程启动 VehicleHal相关代码在源码树中的hardware/interfaces/automotive目录下 首先看下Android.bp文件&#xff1a; cc_binary …

Maven的生命周期与依赖作用域介绍

说明&#xff1a;本文介绍Maven的生命周期&#xff0c;以及在pom.xml文件中每个依赖&#xff08;dependency标签内&#xff09;scope标签的内容。 Maven生命周期 在IDEA项目中&#xff0c;右侧边栏&#xff0c;点Maven&#xff0c;可以看到以下生命周期。 其中&#xff0c; c…

Spring MVC 常用注解

目录 基础概念 常用注解介绍 基础概念 1、MVC &#xff1a;代表一种软件架构设计思想&#xff0c;通俗的理解&#xff1a;客户端发送请求到后台服务器的Controller(C)&#xff0c;控制器调用Model(M)来处理业务逻辑&#xff0c;处理完成后&#xff0c;返回处理后的数据到Vie…

Deformable Transformer论文笔记

原文链接 [2010.04159] Deformable DETR: Deformable Transformers for End-to-End Object Detection (arxiv.org)https://arxiv.org/abs/2010.04159 原文笔记 What 作者结合了可变形卷积的稀疏空间采样和 Transformer 的关系建模能力的优点。提出了Deformable Detr Defor…

文心一言 VS 讯飞星火 VS chatgpt (359)-- 算法导论24.3 1题

一、在图 24-2上运行Dijkstra算法&#xff0c;第一次使用结点 s s s作为源结点&#xff0c;第二次使用结点 z z z作为源结点。以类似于图 24-6 的风格&#xff0c;给出每次while循环后的 d d d值和 π π π值&#xff0c;以及集合 S S S中的所有结点。如果要写代码&#xff0c…

CSRF | GET 型 CSRF 漏洞攻击

关注这个漏洞的其他相关笔记&#xff1a;CSRF 漏洞 - 学习手册-CSDN博客 0x01&#xff1a;GET 型 CSRF 漏洞攻击 —— 理论篇 GET 型 CSRF 漏洞是指攻击者通过构造恶意的 HTTP GET 请求&#xff0c;利用用户的登录状态&#xff0c;在用户不知情的情况下&#xff0c;诱使浏览器…