【STM32开发笔记】移植AI框架TensorFlow到STM32单片机【上篇】

【STM32开发笔记】移植AI框架TensorFlow到STM32单片机【上篇】

    • 一、TFLM是什么?
    • 二、TFLM开源项目
      • 2.1 下载TFLM源代码
      • 2.2 TFLM基准测试说明
      • 2.3 TFLM基准测试命令
    • 三、TFLM初步体验
      • 3.1 PC上运行Keyword基准测试
      • 3.2 PC上运行Person detection基准测试
      • 3.3 No module named 'numpy'问题解决
    • 四、TFLM源码浅析
      • 4.1 编译生成的.o文件
      • 4.2 基准测试的构建目标
      • 4.3 基准测试的构建规则
      • 4.4 TFLM库的构建规则
    • 五、TFLM主体移植
      • 5.1 实现TFLM库的构建
      • 5.2 实现辅助函数microlite_test
      • 5.3 实现keyword基准测试的构建
      • 5.4 实现Person detection基准测试的构建
      • 5.5 实现基准测试依赖的功能——计时和日志
    • 六、参考链接

本系列将介绍如何将TensorFlow Lite for Microcontrollers一直到STM32H7S78-DK上。由于整个过程较为繁琐,本系列将分为上下两篇进行介绍。本文为系列内容的上篇,主要分为TFLM是什么、TFLM初步体验、TFLM源码浅析、TFLM主体移植几个部分。其中,TFLM初步体验部分将会介绍如何在PC上运行TFLM基准测试,TFLM源码浅析部分主要介绍TFLM源码是如何进行构建的,TFLM主体移植主要介绍如何在基于CMake的STM32项目中构建TFLM库和基准测试。

一、TFLM是什么?

你或许都听说过TensorFlow——由谷歌开发并开源的一个机器学习库,它支持模型训练和模型推理。

今天介绍的TFLM,全称是TensorFlow Lite for Microcontrollers,翻译过来就是“针对微控制器的TensorFlow Lite”。那TensorFlow Lite又是什么呢?

TensorFlow Lite(通常简称TFLite)其实是TensorFlow团队为了将模型部署到移动设备而开发的一套解决方案,可以简单理解为TensorFlow的手机版。下面是TensorFlow官网上关于TFLite的一段介绍:

TensorFlow Lite 是一组工具,可帮助开发者在移动设备、嵌入式设备和 loT 设备上运行模型,以便实现设备端机器学习。

而我们今天要介绍的TensorFlow Lite for Microcontrollers(TFLM)则是 TensorFlow Lite的微控制器版本。这里是官网上的一段介绍:

TensorFlow Lite for Microcontrollers (以下简称TFLM)是 TensorFlow Lite 的一个实验性移植版本,它适用于微控制器和其他一些仅有数千字节内存的设备。 它可以直接在“裸机”上运行,不需要操作系统支持、任何标准 C/C++ 库和动态内存分配。核心运行时(core runtime)在 Cortex M3 上运行时仅需 16KB,加上足以用来运行语音关键字检测模型的操作,也只需 22KB 的空间。

这三者一脉相承,都出自谷歌,区别是TensorFlow同时支持训练和推理,而后两者只支持推理。TFLite主要用于支持手机、平台等移动设备,TFLM则可以支持单片机。从发展历程上来说,后两者都可以说是TensorFlow项目的“支线项目”。或者说这三者是一个树形的发展过程,目前是三个并进发展的。

简单总结: TensorFlow Lite是 TensorFlow的移动版,少了训练功能,TensorFlow Lite for Microcontrollers 是 TensorFlow Lite 的MCU优化版。这三者,CPU推理的代码基本上完全一致,后两者也可以理解为TensorFlow 的裁剪版。

二、TFLM开源项目

TFLM代码仓链接:https://github.com/tensorflow/tflite-micro

2.1 下载TFLM源代码

下载TFLM需要使用如下git命令:

 git clone https://github.com/tensorflow/tflite-micro.git

TFLM顶层目录下的文件和目录,如下图所示:

image-20240915212410086

2.2 TFLM基准测试说明

TFLM顶层目录有README.md文件,其Additional Documentation节列出来Benchmark说明,Benchmark(基准测试)用于衡量关键模型和工作负载的性能。

README.md前一半内容为:

image-20240915212828124

完整内容参考: tflite-micro/tensorflow/lite/micro/benchmarks/README.md at main · tensorflow/tflite-micro (github.com)

2.3 TFLM基准测试命令

从README的”Run on x86”可以看到,在x86 PC上运行关键词基准测试的命令是:

make -f tensorflow/lite/micro/tools/make/Makefile run_keyword_benchmark

在x86 PC上运行人体检测基准测试的命令是:

make -f tensorflow/lite/micro/tools/make/Makefile run_person_detection_benchmark

以上两个命令都会调用make命令,并以tensorflow/lite/micro/tools/make/Makefile为构建规则,分别构建run_keyword_benchmarkrun_person_detection_benchmark两个目标。

查阅tensorflow/lite/micro/tools/make/Makefile文件夹内容,可以看到:

image-20240915213658373

这段代码中的 595行、601行、605行、612行、613行 分别会下载一些文件,具体下载的是tflm依赖的库和测试数据集;

而执行上面两个make命令,实际上会依次执行如下步骤:

  1. 下载依赖库和数据集;
  2. 编译测试程序;
  3. 运行测试程序;

必须至少一遍make命令,才会下载测试数据集,才能进行后续的移植步骤。

三、TFLM初步体验

由于TFLM开源项目依赖部分三方软件代码没有直接放在TFLM源码仓中,需要运行一次基准测试才会下载下拉进行编译。因此,我们需要先在PC上体验一下TFLM基准测试。

PC上运行TFLM推荐使用Ubuntu系统,其他操作系统运行可能会有些问题。

3.1 PC上运行Keyword基准测试

PC Linux系统上,运行如下命令,可以执行Keyword基准测试:

make -f tensorflow/lite/micro/tools/make/Makefile run_keyword_benchmark

命令执行完毕,最后输出如下:

image-20240915220542913

PC上运行10次耗时3毫秒。

3.2 PC上运行Person detection基准测试

make -f tensorflow/lite/micro/tools/make/Makefile run_person_detection_benchmark命令执行完毕,最后输出如下:

image-20240915220904048

image-20240915220841572

PC上运行10次,有人的耗时343毫秒,无人的耗时337毫秒。

3.3 No module named 'numpy’问题解决

make命令报错:

image-20240915214404249

解决方法:

pip install numpy

四、TFLM源码浅析

开始移植TFLM之前,需要清楚TFLM整个源码项目是如何构建的(也就是构建规则)。

4.1 编译生成的.o文件

PC上运行完基准测试命令过程中,会执行源码编译命令。运行完成后,使用如下命令,可以找到所有.o文件:

find . -name '*.o'

部分输出如下图所示:

image-20240918205828262

通过该命令的输出,我们可以知道刚刚的两个命令一共有多少源文件参与了编译。

4.2 基准测试的构建目标

要移植TFLM,仅仅知道有多少源文件参与编译还不够,我们需要知道具体的构建规则。本节将通过分析Makefile解读基准测试的具体构建目标(target)。

从前面的PC端运行Keyword基准测试的输出可以看到,可执行程序名称为keyword_benchmark,通过搜索源码,可以找到对应的Makefile构建规则代码为:

image-20240918213031151

这里调用了Makefile的宏函数microlite_test,并传递了4个参数,分别为:

  • 参数1:keyword_benchmark
  • 参数2:$(KEYWORD_BENCHMARK_SRCS)
  • 参数3:$(KEYWORD_BENCHMARK_HDRS)
  • 参数4:$(KEYWORD_BENCHMARK_GENERATOR_INPUTS)

4.3 基准测试的构建规则

下面以keyword_benchmark为例分析具体构建规则。

宏函数microlite_test的具体定义为:

image-20240918214047186

image-20240918215156216

前面我们执行了如下命令:

make -f tensorflow/lite/micro/tools/make/Makefile run_keyword_benchmark

这个命令指定的目标名称为run_keyword_benchmark,对应到helper_function.inc文件中的84行,参数1为keyword_benchmark,下方规则的TEST_SCRIPT变量的值定义在tensorflow/lite/micro/tools/make/Makefile文件中为空白字符串,因此不起作用;

84行还可以看到run_keyword_benchmark目标依赖$(keyword_benchmark_BINARY)目标,回看到52行,可以知道:

  • $(keyword_benchmark_BINARY)目标表示可执行程序文件路径,:

  • $(keyword_benchmark_BINARY)目标依赖$(keyword_benchmark_LOCAL_OBJS)目标;

  • $(keyword_benchmark_BINARY)目标依赖$(MICROLITE_LIB_PATH)目标;

  • $(keyword_benchmark_BINARY)目标的构建规则为:

    $$(CXX) $$(CXXFLAGS) $$(INCLUDES) \
     	-o $$(keyword_benchmark_BINARY) $$(keyword_benchmark_LOCAL_OBJS) \
     	$$(MICROLITE_LIB_PATH) $$(LDFLAGS) $$(MICROLITE_LIBS)
    

根据传参,可以知道,一些变量的值为:

  • keyword_benchmark_LOCAL_SRCS的初始值为: tensorflow/lite/micro/benchmarks/keyword_benchmark.cc

  • keyword_benchmark_LOCAL_HDRS的值为:tensorflow/lite/micro/benchmarks/micro_benchmark.h

  • 得到GEN_RESULTS的命令为: python3 tensorflow/lite/micro/tools/generate_cc_arrays.py gen/linux_x86_64_default_gcc/genfiles tensorflow/lite/micro/models/keyword_scrambled.tflite,该命令会将模型文件转为.h.cc文件,其中.h为声明,.cc为数据:

    #include <cstdint>
    
    constexpr unsigned int g_keyword_scrambled_model_data_size = 34576;
    extern const unsigned char g_keyword_scrambled_model_data[];
    

    命令的输出为:gen/linux_x86_64_default_gcc/genfiles/tensorflow/lite/micro/models/keyword_scrambled_model_data.cc

  • keyword_benchmark_LOCAL_SRCS值会变为包含刚刚生成的模型keyword_scrambled_model_data.cc

  • keyword_benchmark_LOCAL_OBJS的值是:先将keyword_benchmark_LOCAL_SRCS值中所有.cc替换为.o,再给每个值添加前缀gen/linux_x86_64_default_gccobj/core/

  • MICROLITE_LIB_PATH的值为库文件libtensorflow-microlite.a的完整路径: gen/linux_x86_64_default_gcc/lib/libtensorflow-microlite.a

好了,到这里就可以看到$(keyword_benchmark_BINARY)目标构建规则下方命令的主要参数了:

  • -o选项为gen/linux_x86_64_default_gcc/bin/keyword_benchmark

  • $(keyword_benchmark_LOCAL_OBJS)为所有目标文件(.o)列表;

  • $(MICROLITE_LIB_PATH)是链接的库文件(.a)路径;

  • $(LDFLAGS)是链接器命令行选项;

  • $(MICROLITE_LIBS)是额外库选项,实际为 -lm

    到这里,Keyword基准测试的构建规则以及分析清楚了。

4.4 TFLM库的构建规则

接下来,我们分析keyword链接的库文件libtensorflow-microlite.a(简称TFLM库)的链接规则。

该目标的定义为:

image-20240918223607739

这里可以看到,该库是由以下目标文件列表归档(使用ar命令)而来:

  • $(MICROLITE_LIB_OBJS)
  • $(MICROLITE_KERNEL_OBJS)
  • $(MICROLITE_THIRD_PARTY_OBJS)
  • $(MICROLITE_THIRD_PARTY_KERNEL_OBJS)
  • $(MICROLITE_CUSTOM_OP_OBJS)

其中,前四个变量的值来自:

image-20240918223939972

这里可以看到,前面的几个目标文件列表分别来自:

  • $(MICROLITE_LIB_OBJS)来自于$(MICROLITE_CC_SRCS)
  • $(MICROLITE_KERNEL_OBJS)来自于$(THIRD_PARTY_CC_SRCS)
  • $(MICROLITE_THIRD_PARTY_OBJS)来自于$(THIRD_PARTY_KERNEL_CC_SRCS)
  • $(MICROLITE_THIRD_PARTY_KERNEL_OBJS)来自于$(MICROLITE_CC_KERNEL_SRCS)
  • $(MICROLITE_CUSTOM_OP_OBJS)没有在Makefile中定义,默认为空,可以忽略(实际使用时,可以通过命令行参数指定);

经过在Makefile中加入日志打印,发现上述几个xxx_SRCS变量的值为:

image-20240919211922448

五、TFLM主体移植

从TFLM官方介绍文档、测试命令以及源码分析可以知道,在STM32H7S78-DK上移植TFLM可以分解为以下几个主要任务:

  • 实现TFLM库的构建
  • 实现CMake版的辅助函数microlite_test
  • 实现keyword基准测试的构建
  • 实现person detection基准测试(可选)的构建
  • 实现基准测试依赖的功能——计时和日志

接下来分别介绍,如何完成上述任务。

5.1 实现TFLM库的构建

有了以上分析之后,我们就可以进行今天最重要的工作,将Makefile转换为CMake构建规则文件(CMakeLists.txt)。

这部分是整个移植过程中工作量和难度最大的部分,涉及到很多CMake的语法细节,这里不详细介绍。

实现TFLM库构建的CMake代码为:

TFLM-libtflite-micro

5.2 实现辅助函数microlite_test

TFLM源码中,构建基准测试使用了GNU Make的microlite_test宏函数,实现了代码的复用和逻辑精简。和GNU Make类似的,CMake也支持函数。本节我们实现GNU Make的microlite_test宏函数的CMake移植版。

CMake具体代码如下:

TFLM-microlite_test

这部分做了几个特殊处理:

  • 目标类型从可执行程序修改为静态库,即生成文件类型由.elf文件改为.a文件;
  • 使用宏将main函数重命名为${NAME}_main

做出如上两处修改的原因是——由CubeMX生成的基础已经有main函数,并且可以生成elf文件。通过上述两个修改,我们可以将基准测试代码链接到CubeMX生成的代码中去,进而实现整个项目可以在STM32H7S78-DK上运行。

5.3 实现keyword基准测试的构建

有了CMake辅助函数microlite_test之后,实现keyword基准测试的构建就很简单了,直接看代码:

TFLM-keyword_benchmark

5.4 实现Person detection基准测试的构建

同样的,有了CMake辅助函数microlite_test之后,实现Person detection基准测试的构建也很简单,直接看代码:

TFLM-person_detection

5.5 实现基准测试依赖的功能——计时和日志

TFLM本身是一个边缘AI推理库,可以理解为一个举证向量计算库,纯CPU计算不依赖任何外设功能。但是,TFLM的基准测试则依赖计时和日志功能。在不同平台上,计时和日志功能的实现方式有所不同,对应的代码也不同(例如Linux、Windows、MacOS操作系统、STM32单片机、ESP32单片机上,实现计时和日志的代码是不是一样的)。

TFLM源码中,已经为移植进行了设计,其中两个文件名分别对应计时和日志:

  • debug_log.cc,用于实现计时功能,不同平台有不同版本;
  • micro_time.cc,用于实现计时功能,不同平台有不同版本;

默认的debug_log.cc实现为tensorflow/lite/micro/debug_log.cc,其主要代码内容为:

TFLM-debug_log_stderr

这里实现了——使用vfprintfstderr输出。借助过往经验,我们知道CubeMX生成的项目稍加修改就能够支持printf,这种方式应该也可以支持。

因此,对于STM32单片机这部分可以不用修改!

默认的micro_time.cc实现为tensorflow/lite/micro/micro_time.cc,其主要代码内容为:

TFLM-micro_time_ctime

这个文件里面提供了两种实现,通过TF_LITE_USE_CTIME宏进行切换:

  • 如果没定义TF_LITE_USE_CTIME宏,则为空实现,提供空壳函数,可以编译通过,无法正常计时;
  • 如果定义了TF_LITE_USE_CTIME宏,则为基于C标准库clock()CLOCKS_PER_SEC的计时;

对于STM32单片机,C标准库的clock()的计时不能直接使用。

因此,对于STM32单片机,需要单独实现一个micro_time.cc文件,具体代码为:

TFLM-micro_time_stm32_hal

到这里,TFLM移植的主体内容基本已经完成了,还有一些问题需要解决,我能将在下篇进行介绍,欢迎关注。

本篇内容到此为止,感谢阅读!

六、参考链接

  1. TensorFlow Lite for Microcontrollers介绍: TensorFlow Lite for Microcontrollers (google.cn)
  2. TensorFlow Lite for Microcontrollers入门: 微控制器入门 | TensorFlow (google.cn)
  3. tflite-micro 源码GitHub仓: https://github.com/tensorflow/tflite-micro
  4. CMake最新文档: CMake Reference Documentation — CMake 3.30.3 Documentation

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885100.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AIGC实践|AI助力文旅短视频创作全流程

前言&#xff1a; 受到央视《AI我中华》及各地文旅AI宣传片的启发&#xff0c;本次我将尝试使用AI辅助进行城市宣传片的创作探索。我将尽可能详细的展示使用AI辅助创作城市宣传片的全过程&#xff0c;从灵感捕捉到最终成品呈现。现在&#xff0c;让我们一同踏上这段充满创意的探…

如何部署北斗定位应用,基于国产自主架构LS2K1000LA-i处理器平台

北斗卫星导航系统(以下简称北斗系统)是着眼于国内经济社会发展需要,自主建设、独立运行的卫星导航系统。经过多年发展,北斗系统已成为面向全球用户提供全天候、全天时、高精度定位、导航与授时服务的重要新型基础设施。 图 1 北斗定位系统的应用优势 强可控:北斗系统是国…

本省第一所!新大学,揭牌!

9月26日&#xff0c;海南艺术职业学院举行揭牌仪式&#xff0c;标志着海南省第一所公办艺术类高等职业院校正式揭牌成立。海南省旅文厅党组成员、副厅长刘成出席揭牌仪式&#xff0c;省教育厅党组成员、副厅长邢孔政在揭牌仪式上宣读省人民政府同意设立海南艺术职业学院的批复。…

【C++单调队列】1438. 绝对差不超过限制的最长连续子数组|1672

本文时间知识点 C队列、双向队列 LeetCode1438. 绝对差不超过限制的最长连续子数组 给你一个整数数组 nums &#xff0c;和一个表示限制的整数 limit&#xff0c;请你返回最长连续子数组的长度&#xff0c;该子数组中的任意两个元素之间的绝对差必须小于或者等于 limit 。 如…

如何使用GLib的单向链表GSList

单向链表是一种基础的数据结构&#xff0c;也是一种简单而灵活的数据结构&#xff0c;本文讨论单向链表的基本概念及实现方法&#xff0c;并着重介绍使用GLib的GList实现单向链表的方法及步骤&#xff0c;本文给出了多个实际范例源代码&#xff0c;旨在帮助学习基于GLib编程的读…

基于SpringBoot大学生就业管理系统设计与实现

1.1 研究背景 科学技术日新月异的如今&#xff0c;计算机在生活各个领域都占有重要的作用&#xff0c;尤其在信息管理方面&#xff0c;在这样的大背景下&#xff0c;学习计算机知识不仅仅是为了掌握一种技能&#xff0c;更重要的是能够让它真正地使用到实践中去&#xff0c;以…

马丁格尔EA交易策略,昂首平台优化操作指南来了

在金融市场中&#xff0c;选择合适的交易工具和策略至关重要。在昂首平台&#xff0c;我们为您提供了多种高效交易策略&#xff0c;其中马丁格尔EA便是备受推崇的选择。下面我们将为您详细介绍如何在非活动阶段优化马丁格尔EA的操作&#xff0c;确保交易的安全与盈利。 1. 非活…

一、Spring Boot集成Spring Security之自动装配

Spring Boot集成Spring Security之自动装配介绍 一、实现功能及软件版本说明二、创建Spring Boot项目三、查看自动装配配置类四、自动装配配置类之SecurityAutoConfiguration1、SecurityAutoConfiguration部分源码2、主要作用3、SpringBootWebSecurityConfiguration3.1、Spring…

Prometheus监控k8s环境构建

传统架构中比较流行的监控工具有 Zabbix、Nagios 等&#xff0c;这些监控工具对于 Kubernetes 这类云平台的监控不是很友好&#xff0c;特别是当 Kubernetes 集群中有了成千上万的容器后更是如此&#xff0c;本章节学习下一代的云原生监控平台---Prometheus。 一、基于kuberne…

【从零开始实现stm32无刷电机FOC】【实践】【7.2/7 完整代码编写】

目录 stm32cubemx配置芯片选择工程配置stm32基础配置SPI的配置定时器的配置ADC的配置中断优先级的配置生成工程 工程代码编写FOC代码结构搭建电机编码器角度读取PWM产生FOC开环代码编写确定电机正负旋转方向电机旋转速度计算多圈逻辑角度电流采样极对数转子角度确定 闭环控制控…

The Open Group 2024生态系统架构·可持续发展年度大会全面解读

在全球数字化转型加速的时代背景下&#xff0c;人工智能技术正以前所未有的速度重塑各行各业的生态系统。尤其是随着ChatGPT、Sora等技术的爆发&#xff0c;AIGC&#xff08;人工智能生成内容&#xff09;技术在多个领域展现出超越人类的能力&#xff0c;AGI&#xff08;通用人…

Stable Diffusion绘画 | SDXL模型使用注意事项

注意事项 SDXL模型的使用&#xff0c;对电脑配置要求更高&#xff0c;需要 8GB 以上显存的显卡SDXL模型兼容性不太好&#xff0c;容易出现错误&#xff0c;对 Mac 电脑不友好只能选择 SDXL模型 训练的 LoRA 使用不能使用旧的 VAE文件 SDXL 专用 VAE 文件&#xff1a;sdxl_vae.…

HTML流光爱心

文章目录 序号目录1HTML满屏跳动的爱心&#xff08;可写字&#xff09;2HTML五彩缤纷的爱心3HTML满屏漂浮爱心4HTML情人节快乐5HTML蓝色爱心射线6HTML跳动的爱心&#xff08;简易版&#xff09;7HTML粒子爱心8HTML蓝色动态爱心9HTML跳动的爱心&#xff08;双心版&#xff09;1…

类和对象(3)

博客ID&#xff1a;LanFuRenC系列专栏&#xff1a;C语言重点部分 C语言注意点 C基础 Linux 数据结构 C注意点 声明等级&#xff1a;黑色->蓝色->红色 欢迎新粉加入&#xff0c;会一直努力提供更优质的编程博客&#xff0c;希望大家三连支持一下啦 目录 1.拷贝构造 …

ACM第三次考核题解

ACM第三次考核题解 题目序号难度题目编号题目考察知识点1签到题A这是一道很难的题&#xff01;&#xff01;&#xff01;输出2迷之难度F神说要有光&#xff0c;于是有了手电筒贪心3简单BThis is a real English problem&#xff01;思维 英语4简单C玩具简单排序5简单I“近义词…

速通数据结构与算法第六站 树堆

系列文章目录 速通数据结构与算法系列 1 速通数据结构与算法第一站 复杂度 http://t.csdnimg.cn/sxEGF 2 速通数据结构与算法第二站 顺序表 http://t.csdnimg.cn/WVyDb 3 速通数据结构与算法第三站 单链表 http://t.csdnimg.cn/cDpcC 4 速通…

一文上手SpringSecurity【九】

在校验token的过滤器当中, 由于需要根据用户名称, 去查询出要认证的对象,然后再去数据库当中查询出角色列表、权限列表.频繁的操作数据库,可能会带来性能瓶颈, 那么我们该如何解决呢? 我们可以引入Redis, 将认证的对象,存储到Redis当中,在校验token的过滤器当中,可以直接从Red…

9.29 LeetCode 3304、3300、3301

思路&#xff1a; ⭐进行无限次操作&#xff0c;但是 k 的取值小于 500 &#xff0c;所以当 word 的长度大于 500 时就可以停止操作进行取值了 如果字符为 ‘z’ &#xff0c;单独处理使其变为 ‘a’ 得到得到操作后的新字符串&#xff0c;和原字符串拼接 class Solution { …

ServletContainerInitializer接口详解

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhlServletContainerInitializer概述 ServletContainerInitializer是Servlet 3.0规范中引入的一个接口,它的主要目的是允许开发者在Servlet容器(如Tomcat、Jetty等)启动时执行一些自定义的初始化代…

synchronized相关知识

1、对象头Markword 2、锁升级过程 无锁 偏向锁&#xff1a;只有一个线程过来加锁&#xff0c;Markword对应变化&#xff1a;偏向线程ID存储当前线程ID&#xff0c;偏向锁标志位置成1&#xff0c;锁标志位置为01&#xff1b;此后如果当前线程再次获取锁&#xff0c;只需对比偏…