【预备理论知识——1】深度学习:概率论概述

简单地说,机器学习就是做出预测。

概率论

掷骰子

  1. 假设我们掷骰子,想知道看到1的几率有多大,而不是看到另一个数字。 如果骰子是公平的,那么所有六个结果{1,…, 6}都有相同的可能发生, 因此我们可以说 1 发生的概率为1/6。

  2. 然而现实生活中,对于我们从工厂收到的真实骰子,我们需要检查它是否有瑕疵。 检查骰子的唯一方法是多次投掷并记录结果。 对于每个骰子,我们将观察到中{1,…, 6}的一个值。 对于每个值,一种自然的方法是将它出现的次数除以投掷的总次数, 即此事件(event)概率的估计值。

  3. 大数定律(law of large numbers)告诉我们: 随着投掷次数的增加,这个估计值会越来越接近真实的潜在概率。经过500次实验,每个数出现概率接近真实概率1/6 。
    在这里插入图片描述

概率论公理

  1. 概率论的公理是由安德烈·柯尔莫哥洛夫(Andrey Kolmogorov)在20世纪30年代提出的,为概率论提供了一个坚实的数学基础。这些公理定义了概率空间和概率的基本概念。以下是概率论的三个基本公理:

    • 非负性:对于任何事件A ,其概率 P(A) 都是非负的,即:P(A)≥ 0

    • 归一性:样本空间(所有可能事件的集合)的概率为1,即: P(Ω) = 1 , 其中,Ω 是样本空间。

    • 可列可加性:如果事件 A~1~, A~2~, ...是两两互斥的(即对于任意的 i 不等于 j , Ai 和 Aj 不能同时发生),那么这些事件的并集的概率是各个事件概率的和,即:
      在这里插入图片描述

  2. 这些公理为概率论提供了一个坚实的基础,使得我们可以定义更复杂的概率概念,如条件概率、独立性、贝叶斯定理等。

随机变量

  1. 随机变量是概率论和统计学中的一个基本概念,它是一种将随机试验的结果映射到实数上的函数。随机变量使我们能够用数学方式描述和分析随机现象。随机变量几乎可以是任何数量,并且它可以在随机实验的一组可能性中取一个值。

  2. 随机变量主要分为两种类型:

    • 离散随机变量:其可能的取值是有限的或可数无限的。例如,掷骰子的结果就是一个离散随机变量,因为它只能取1到6之间的整数值。

    • 连续随机变量:其可能的取值是无限且连续的。例如,测量人的身高就是一个连续随机变量,理论上可以取任何正值。

处理多个随机变量

  1. 处理多个随机变量时,我们通常关心它们之间的相互关系以及如何联合描述这些变量的概率特性。
  2. 举一个更复杂的例子:图像包含数百万像素,因此有数百万个随机变量。 在许多情况下,图像会附带一个标签(label),标识图像中的对象。 我们也可以将标签视为一个随机变量。 我们甚至可以将所有元数据视为随机变量,例如位置、时间、光圈、焦距、ISO、对焦距离和相机类型。 所有这些都是联合发生的随机变量。 当我们处理多个随机变量时,会有若干个变量是我们感兴趣的。

联合概率

  1. 联合概率是描述两个或多个随机变量共同取特定值的概率的量度。它提供了这些变量之间关系的完整视图,包括它们是否独立以及它们之间如何相互依赖。
  2. 定义
    在这里插入图片描述

条件概率

  1. 条件概率是指在某个条件或事件已经发生的前提之下,另一个事件发生的概率。用数学语言来描述,如果事件
    A和事件B是两个随机事件,那么在事件B发生的条件下,事件A发生的概率记作P(A∣B)
  2. 公式
    在这里插入图片描述

贝叶斯定理

  1. 贝叶斯定理(Bayes’ Theorem)是概率论中的一个重要定理,它提供了一种计算条件概率的方法,特别是在已知其他相关事件的概率时。贝叶斯定理在统计学、机器学习、数据科学、医学诊断等领域有广泛的应用。
  2. 假设我们有事件A和事件B贝叶斯定理描述了在事件B发生的条件下,事件A发生的概率,即P(A∣B)与在事件A发生的条件下,事件B发生的概率,即P(B∣A)之间的关系:
    在这里插入图片描述

边际化

  1. 边际化(Marginalization)是概率论和统计学中的一个重要概念,它涉及将多维随机变量的概率分布转化为较低维度的概率分布。具体来说,边缘化是指通过求和或积分的方式,将一个或多个变量从联合概率分布中去除,从而得到剩余变量的边缘概率分布。
  2. 举例:假设我们有三个随机变量 AB C,它们的联合概率分布为 P(A,B,C)。如果我们想要找到变量 AB的边际概率分布,而忽略 C 的影响,我们可以通过对 C 的所有可能值进行求和来实现这一点:
    P(A,B)=∑~c~P(A,B,c);这里的求和是对所有可能的 C 值进行的。

独立性

  1. 在概率论和统计学中,独立性是一个基本概念,用来描述两个或多个事件或随机变量之间是否存在关联。如果两个事件或随机变量之间没有关联,即一个事件的发生不影响另一个事件发生的概率,那么它们就被称为是相互独立的。
  2. 对于两个事件 A 和 B,如果它们满足以下条件,则称事件 A 和 B 是独立的。这意味着事件 A 和 B 同时发生的概率等于它们各自发生概率的乘积。
    在这里插入图片描述

期望与方差

期望

  1. 为了概括概率分布的关键特征,我们需要一些测量方法。 一个随机变量的期望(expectation,或平均值(average))是随机变量的加权平均值,它反映了随机变量的中心趋势。
  2. 定义
    在这里插入图片描述

方差

  1. 在许多情况下,我们希望衡量随机变量与其期望值的偏置。这可以通过方差来量化;方差是衡量随机变量分散程度的度量,它表示随机变量的值与其期望值之间的差异的平方的期望值
  2. 定义:
    在这里插入图片描述
  3. 标准差是方差的平方根,它与原始数据具有相同的单位,因此通常用来描述数据的离散程度:
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885065.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构】图的最小生成树

快乐的流畅:个人主页 个人专栏:《C游记》《进击的C》《Linux迷航》 远方有一堆篝火,在为久候之人燃烧! 文章目录 引言一、最小生成树的概念二、Kruskal算法2.1 思想2.2 实现 三、Prim算法3.1 思想3.2 实现 四、Kruskal和Prim的对比…

container_of 函数的分析

这个函数的目的是, 通过结构体里面的内容 找到 大结构体的 基地址。 函数的原型是:  PTR是指针 type , mem&#xff…

新手上路:Anaconda虚拟环境创建和配置以使用PyTorch和DGL

文章目录 前言步骤 1: 安装 Anaconda步骤 2: 创建新的 Anaconda 环境步骤 3: 安装最新版本的 PyTorch步骤 4: 安装特定版本的 PyTorch步骤 5: 安装最新版本的 DGL步骤 6: 安装特定版本的 DGL步骤 7: Pycharm中使用虚拟环境解释器第一种情况:创建新项目第二种情况&am…

Word办公自动化的一些方法

1.Word部分内容介绍 word本身是带有格式的一种文档,有人说它本质是XML,所以一定要充分利用标记了【样式】的特性来迅速调整【格式】,从而专心编辑文档内容本身。 样式(集) 编号(多级关联样式编号&#xff…

Tomcat系列漏洞复现

CVE-2017-12615——Tomcat put⽅法任意⽂件写⼊漏洞 漏洞描述 当 Tomcat运⾏在Windows操作系统时,且启⽤了HTTP PUT请求⽅法(例如,将 readonly初始化参数由默认值设置为false),攻击者将有可能可通过精⼼构造的攻击请求…

探索 Snowflake 与 Databend 的云原生数仓技术与应用实践 | Data Infra NO.21 回顾

上周六,第二十一期「Data Infra 研究社」在线上与大家相见。活动邀请到了西门子数据分析师陈砚林与 Databend 联合创始人王吟,为我们带来了一场关于 Snowflake 和 Databend 的技术探索。Snowflake,这个市值曾超过 700 亿美元的云原生数据仓库…

Android 安卓内存安全漏洞数量大幅下降的原因

谷歌决定使用内存安全的编程语言 Rust 向 Android 代码库中写入新代码,尽管旧代码(用 C/C 编写)没有被重写,但内存安全漏洞却大幅减少。 Android 代码库中每年发现的内存安全漏洞数量(来源:谷歌&#xff09…

资质申请中常见的错误有哪些?

在申请建筑资质的过程中,企业可能会犯一些常见的错误,以下是一些需要避免的错误: 1. 资料准备不充分: 申请资质需要提交大量的资料,包括企业法人资料、财务报表、业绩证明等。资料不齐全或不准确都可能导致申请失败。…

汽车线束之故障诊断方案-TDR测试

当前,在汽车布局中的线束的性能要求越来越高。无法通过简单的通断测试就能满足性能传输要求。早起对智能化要求不高,比如没有激动雷达、高清摄像、中央CPU等。 近几年的智能驾驶对网络传输要求越来越高,不但是高速率,还需要高稳定…

【C++题目】7.双指针_和为 s 的两个数字

文章目录 题目链接:题目描述:解法C 算法代码:图解 题目链接: LCR 179.查找总价格为目标值的两个商品 题目描述: 解法 解法一(暴力解法,会超时) 两层 for 循环列出所有两个数字的组合…

一种使用 SUMO + Python 联合仿真平台

一种使用 SUMO Python 联合仿真平台(一) 本文适用人群包括但不仅限于【交通运输】【车辆工程】【自动化控制】【计算机科学与技术】等专业本科生、研究生、博士生。本文通过在Pycharm平台,使用Python语言 Traci工具包,调用SUMO客…

【步联科技身份证】 身份证读取与解析———未来之窗行业应用跨平台架构

一、身份证解析代码 C# function 身份证数据解析_湖南步联科技(wzxx) {var result {};result[xm] wzxx.substr(0, 15);result[xbdm] wzxx.substr(15, 1);result[mzdm] wzxx.substr(16, 2);result[csrq] wzxx.substr(18, 8);result[dzmc] wzxx.substr(26, 35);result[gms…

Ansible-template模块动态生成特定文件

文章目录 一、Jinja2介绍什么是主要特性安装基本用法进阶特性总结 Jinja2与Ansible关系1. 模板引擎2. Ansible 的依赖3. 变量和模板4. 动态生成配置5. 社区和生态系统总结 二、Ansible如何使用Jinja2使用template模块Jinja2文件中使用判断和循环Jinja2文件中使用判断语法 Jinja…

如何在算家云搭建text-generation-webui(文本生成)

一、text-generation-webui 简介 text-generation-webui 是一个流行的用于文本生成的 Gradio Web UI。支持 transformers、GPTQ、AWQ、EXL2、llama.cpp (GGUF)、Llama 模型。 它的特点如下, 3 种界面模式:default (two columns), notebook, chat支持多…

Vue发送邮件攻略:从搭建到实现详细步骤?

vue发送邮件功能实现方法?Vue前端如何实现发送邮件? 随着应用功能的不断扩展,用户交互的复杂性也在增加。其中,发送邮件功能是许多Web应用中不可或缺的一部分。AokSend将详细介绍如何使用Vue.js实现发送邮件功能。 Vue发送邮件&…

Springboot指定扫描路径

方式一:通过在启动类的SpringbootApplication中指定包扫描或类扫描 指定需要扫描的包 scanBasePackages{"待扫描包1","待扫描包2", . . . ," "} 指定需要扫描的类 scanBasePackageClasses{类1.class,类2.class,...} 方式二&#xff…

STM32F103C8----3-1 LED闪烁(跟着江科大学STM32)

一,电路图 接线图 面包板的的使用请参考:《面包板的使用_面包板的详细使用方法-CSDN博客》 二,目的/效果 2.1 推婉输出 外部供电(熄的时间长) 2.2 推婉输出 内部供电(亮的时间长) 三,创建Keil项目 详…

音乐项目总结(终)

总的来说写这个项目还是状态差了,前期中期写太慢,后期疯狂赶。 讲点对写这个项目能想起来解决的问题和写的的感触。 前期:当时觉得时间很充足,有布置算法题,我竟然还花三四天去学算法,,动态规划…

【网络安全】网络基础第一阶段——第三节:网络协议基础---- VLAN、Trunk与三层交换技术

目录 一、交换机 1.1 交换机定义 1.1.1 交换机 1.2 工作原理 1.2.1 数据帧的转发 1.2.2 交换机处理数据帧的三种行为 1.2.3 交换机通信 二、虚拟局域网(VLAN) 2.1 虚拟局域网简介 2.1.1 为什么需要VLAN 2.1.2 广播域的分割与VLAN的必要性 2.…

FPGA实现PCIE图片采集转HDMI输出,基于XDMA中断架构,提供3套工程源码和技术支持

目录 1、前言工程概述免责声明 2、相关方案推荐我已有的PCIE方案 3、PCIE基础知识扫描4、工程详细设计方案工程设计原理框图测试图片QT上位机XDMA配置及使用XDMA中断模块FDMA图像缓存Native视频时序生成RGB转HDMI输出模块Windows版本XDMA驱动安装Linux版本XDMA驱动安装工程源码…