Unity中的功能解释(数学位置相关和事件)

向量计算

Vector3.Slerp(起点坐标,终点坐标,t),可是从起点坐标以一个圆形轨迹到终点坐标,有那么多条轨迹,那怎么办

Vector3.Slerp 进行的是沿球面插值,因此并不是沿着严格的“圆形轨迹”移动,而是在两点所在的大圆弧(球体上的最短路径)上插值。

点乘叉乘判断方位,点乘得到的结果大于0和小于0,大于0的时候相距的角度大于90度,小于0则说明在前方

90度以内为正,到180为负,此为两向量点乘可得结果

所以两点之间可以判断前后的关系

叉乘,两向量相乘出垂直的向量,通过新向量的.y判断左右,大于0朝上,说明在目标向量的右侧,小于0,说明在目标向量的左侧

点乘(Dot Product)

A⋅B=∣A∣∣B∣cosθ

A⋅B=A1​B1​+A2​B2​+⋯+An​Bn​

  • 2D 点乘: 若 A=(Ax,Ay)\mathbf{A} = (A_x, A_y)A=(Ax​,Ay​) 和 B=(Bx,By)\mathbf{B} = (B_x, B_y)B=(Bx​,By​),那么点乘为:

    A⋅B=AxBx+AyBy\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_yA⋅B=Ax​Bx​+Ay​By​
  • 3D 点乘: 若 A=(Ax,Ay,Az)\mathbf{A} = (A_x, A_y, A_z)A=(Ax​,Ay​,Az​) 和 B=(Bx,By,Bz)\mathbf{B} = (B_x, B_y, B_z)B=(Bx​,By​,Bz​),那么点乘为:

    A⋅B=AxBx+AyBy+AzBz\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_zA⋅B=Ax​Bx​+Ay​By​+Az​Bz​

debug的射线


Debug.DrawLine(点&点)

Debug.DrawLine(Vector3 start, Vector3 end, Color color, float duration);

Vector3 startPoint = new Vector3(0, 0, 0);
Vector3 endPoint = new Vector3(5, 0, 0);
Debug.DrawLine(startPoint, endPoint, Color.red, 2.0f); 
 // 画一条从 (0,0,0) 到 (5,0,0) 的红色线,持续2秒

Debug.DrawRay (点&向量)

Debug.DrawRay(Vector3 start, Vector3 direction, Color color, float duration);

Vector3 rayOrigin = new Vector3(0, 0, 0);
Vector3 rayDirection = new Vector3(5, 0, 0);  // 方向向量控制长度
Debug.DrawRay(rayOrigin, rayDirection, Color.blue, 2.0f);
  // 画出长度为 5 的蓝色射线,持续2秒

Camera的坐标系转换

  • WorldToScreenPoint: 将世界坐标转换为屏幕坐标。常用于把场景中物体的位置转换为 UI 屏幕上的坐标。

  • 物体位置转为 UI 坐标:假设你有一个 3D 物体,你希望在 UI 上显示其位置,或者让一个 UI 元素跟随它。这时你就需要把物体的世界坐标转换为屏幕坐标,UI 系统才能正确定位该元素。

  • 射线检测或点击交互:你可以使用 WorldToScreenPoint 来将 3D 世界中的物体位置转换为 2D 坐标,以便处理基于屏幕点击的交互,例如在物体上点击时触发某些事件。

  • // 获取物体的世界坐标
    Vector3 worldPosition = objectTransform.position;
    
    // 将世界坐标转换为屏幕坐标
    Vector3 screenPosition = Camera.main.WorldToScreenPoint(worldPosition);
    
    // 现在 screenPosition 包含物体在屏幕上的 X、Y 坐标(以像素为单位),和 Z 值(深度)。

    关于Z值:是目标点,垂直到相机面的距离。

  • Z 值可以用来判断物体是在摄像机的前面(正值)还是后面(负值)

  • ScreenToWorldPoint: 将本地屏幕坐标转换为世界坐标。通常在基于屏幕点击(例如鼠标点击)来确定场景中的具体位置时使用。

  • // 获取鼠标点击位置(屏幕坐标)
    Vector3 screenPosition = Input.mousePosition;
    
    // 设置一个距离(深度值)
    screenPosition.z = 10.0f; // 假设距离摄像机10个单位
    
    // 将屏幕坐标转换为世界坐标
    Vector3 worldPosition = Camera.main.ScreenToWorldPoint(screenPosition);
    
    // 使用 worldPosition 在3D世界中做某些操作,比如放置物体
    
  • Z 值的作用ScreenToWorldPoint 的 Z 值非常重要。它决定了转换的深度,即这个屏幕坐标在 3D 世界中距离摄像机有多远。如果 Z 值太小,结果会在摄像机附近;如果 Z 值太大,结果会在远处的世界位置。ScreenToWorldPoint 用来将屏幕上的 2D 坐标转换为 3D 世界中的点,核心是需要一个 Z 值来确定该点在世界中的深度位置

  • WorldToViewportPoint: 将世界坐标转换为视口坐标。视口坐标通常指的是 (0,0) 到 (1,1) 范围内的相对坐标,常用于与 UI 元素的交互。

  • // 获取物体的世界坐标
    Vector3 worldPosition = objectTransform.position;
    
    // 将世界坐标转换为视口坐标
    Vector3 viewportPosition = Camera.main.WorldToViewportPoint(worldPosition);
    
    // 现在 viewportPosition 是 (X, Y, Z) 值
    // X 和 Y 值的范围为 0 到 1,表示相对摄像机视野中的位置
    // Z 值表示物体与摄像机之间的距离
    

    视口坐标的 X 和 Y 值可以超出 0 到 1 的范围

  • 这些坐标值是相对的,X 和 Y 超出范围并不意味着物体完全不可见,物体仍然可能部分显示在边缘(视角的原因)。

  • 如果物体的视口坐标的 X 和 Y 值在 (0,0) 到 (1,1) 之间,并且 Z 值为正,则物体在摄像机的视野内;否则物体在视野外或被其他物体遮挡。

  • ViewportToWorldPoint: 将视口坐标转换为世界坐标。这在处理以视口为基础的坐标系转换时很有用,比如在分辨率变化时保持特定 UI 元素的比例。

  • ViewportToScreenPoint: 将视口坐标转换为屏幕坐标。可以帮助从相对的视口坐标系转换到具体像素的屏幕坐标系。

  • 视口坐标系:这是相对的,(0,0) 代表左下角,(1,1) 代表右上角,与屏幕的分辨率无关。
  • 屏幕坐标系:这是绝对的,单位是像素。例如,在 1920x1080 的屏幕上,(1920,1080) 代表屏幕的右上角。
  • 视口超出 0 到 1 的范围:如果视口坐标的 X 和 Y 值超出了 (0,0) 到 (1,1),那么屏幕坐标也会相应地超出屏幕范围,代表物体在屏幕之外。

Transform的坐标系方法

Transform 有父物体时,transform.position 表示的是该物体在世界坐标系中的位置

(注:这里的本地,指的是每一个transform组件,都有自己的本地坐标系)

世界转本地

传入世界vector3,然后以本物体的坐标系重新修改,再返回改后 的vector3

  • InverseTransformDirection:将一个方向向量从世界空间转换到本地空间(即局部空间)。这个向量表示的是一个方向,不会受到位移的影响。
  • InverseTransformPoint:将一个点的坐标从世界空间转换到本地空间。这个方法会受到父对象的位置影响。
  • InverseTransformVector:将一个向量从世界空间转换到本地空间。和 InverseTransformDirection 类似,但它不仅仅表示方向,还可以包括缩放。
  • 为毛偏用inverse:"inverse" 通常给人一种“反转”的感觉,但在这里的语境中,它指的是 从世界坐标系 “逆转回”到局部坐标系 的操作。
  • 这个“Inverse” 其实指的是矩阵的逆变换。在 3D 渲染或游戏开发中,Transform 操作本质上是通过矩阵来进行坐标转换的。对象在世界坐标系中的变换(位置、旋转、缩放)会组成一个变换矩阵,这个矩阵可以把局部坐标转换到世界坐标系。而“逆矩阵”操作则是反过来,将世界坐标系的值转换回局部坐标系。

本地坐标转世界坐标

Vector3 localDirection = new Vector3(1, 0, 0); // 本地坐标中的向右方向
Vector3 worldDirection = transform.TransformDirection(localDirection); // 转换为世界坐标系的方向

 本transform下的坐标传入,转为世界的坐标

  • TransformDirection:将一个本地坐标系下的方向转换到世界坐标系。
  • TransformPoint:将一个本地坐标系下的点的坐标转换到世界坐标系。
  • TransformVector:将一个本地坐标系下的向量转换到世界坐标系。
// 获取物体的 Transform 组件
Transform objTransform = gameObject.transform;

// 使用 TransformPoint 方法将本地坐标转换为世界坐标
Vector3 worldPosition = objTransform.TransformPoint(localPosition);

// 使用 InverseTransformPoint 方法将世界坐标转换为本地坐标
Vector3 localPosition = objTransform.InverseTransformPoint(worldPosition);

 意思是一个Transform,的坐标值,会因为父对象改变而改变,并不完全取决于世界坐标

一个对象的 Transform 通常包括位置(position)、旋转(rotation)和缩放(scale)等属性。

这些属性的值可以分为局部坐标(local coordinates)和世界坐标(world coordinates)两种,五五开。

弧度数值与角度数值

rad弧度。degree角度

角度乘以一个0.几转换成弧度

弧度乘以五十多变成角度

Mathf.Lerp

public static float Lerp(float a, float b, float t);
  • a:起始值。
  • b:结束值。
  • t:插值因子,取值范围通常为 [0, 1]。当 t=0 时返回 a,当 t=1 时返回 b,如果 t 在 0 和 1 之间,返回 a 和 b 之间的线性插值值。

工作原理:

Lerp 函数的原理是:

result=a+(b−a)×t

t 为 0 时,结果是 a;当 t 为 1 时,结果是 b;而 t 为 0 和 1 之间的值时,结果是 ab 之间的插值。

BaseEventData

  • 统一处理不同事件类型的数据

    • 不同的事件(如鼠标点击、键盘按键、触摸、拖拽)可能需要传递不同的信息。eventData 通过不同的子类(如 PointerEventDataAxisEventData)来封装这些信息,简化了事件系统的处理流程。
    • 这样,所有事件的数据结构就变得一致,方便事件的处理和扩展。
  • 传递事件的详细信息

    • 当你处理用户交互时,除了知道事件发生了之外,通常你还需要了解事件发生的具体细节。例如:
      • 用户点击了什么位置?
      • 用户拖拽了哪个对象?
      • 鼠标或触控设备按下的是哪个按钮?
    • eventData 中包含了这些信息,可以让你在事件回调中轻松获取并处理这些数据。

举例说明:

假设你在处理点击事件时,如果只提供一个简单的事件通知,可能只能知道“某个按钮被点击了”。但使用 PointerEventData,你可以得到更多的信息:

  • 点击的对象是什么。
  • 点击的坐标是哪里。
  • 按下的鼠标按钮是哪一个(左键、右键、中键等)。
  • 是否发生了拖拽操作。
  • public void OnButtonClick(PointerEventData eventData)
    {
        Debug.Log("Clicked at position: " + eventData.position);
    }

ugui的RectTransform

unity中的小碎块功能

ugui不允许在同一个物体上挂相同的组件

lambda表达式的简写

()=>{        }

单个参数,且已知类型,可以省括号

仅一条返回语句,不用写return,直接在=>右边写要返回的东西

错误示例:


错误  Func<int> func = () => return 1;
正确  Func<int> func = () => 1;  // 简写形式,无需 return 关键字
正确  Func<int> func = () =>{  return 1; };// 显式使用 return 关键字

只有一个参数的 Lambda 表达式

单行表达式: 如果 lambda 表达式仅包含一个表达式,可以省略花括号和 return 关键字

x => x * x 表示一个接受一个参数 x 并返回 x * x

Func<int, int> square = x => x * x;

 多个参数的 Lambda 表达式

(x, y) => x + y 表示一个接受两个参数 xy 并返回它们的和

Func<int, int, int> add = (x, y) => x + y;

 无参数的 Lambda 表达式

不接受参数并执行 Console.WriteLine("Hello, World!")

Action greet = () => Console.WriteLine("Hello, World!");

 块状的 Lambda 表达式

单个参数配块状代码

Func<int, int> doubleValue = x =>
{
    int result = x * 2;
    return result;
};

 类型推断与显式类型

编译器可以自动推断 lambda 表达式的参数类型

Func<int, int> increment = x => x + 1;  // 自动推断参数类型为 int

你也可以显式指定参数类型(通常在委托声明时指定)

Func<int, int> increment = (int x) => x + 1;

Resources.Load<T>()

Resources.LoadAsync<T>()

返回值的问题

这两种泛型资源加载都只有一种返回值,Load是返回T,Loadasync返回ResourceRequest,T在ResourceRequest.asset中体现

Resources.Load<T>():

  • 这个方法会立即加载资源,并返回你指定类型 T 的对象。
  • 你需要手动指定资源的类型,通过泛型参数 T。返回值的类型就是你传入的 T
  • Resources.Load() 还有非泛型的重载,返回值类型是 UnityEngine.Object

Resources.LoadAsync<T>():

  • 这个方法是异步加载资源。加载过程不会阻塞主线程,返回的对象是一个 ResourceRequest,但是其中包含你指定的泛型类型 T
  • 加载完成后,你可以通过 ResourceRequest.asset 访问加载的资源,该资源类型是你指定的 T

泛型的问题

总结:泛型是要自己输入的,用泛型T是为了减少手动类型转换的过程

如果不传入泛型 TResources.Load() 会返回一个通用的 UnityEngine.Object

必须手动将它转换为你期望的类型

Object obj = Resources.Load("MyPrefab");  // 返回 UnityEngine.Object
GameObject myPrefab = (GameObject)obj;    // 手动转换

if (obj is GameObject)
{
    GameObject myPrefab = (GameObject)obj;
}

GameObject myPrefab = Resources.Load<GameObject>("MyPrefab");

所以泛型T,要手动传入这个资源的类型,从而省去里面的类型转换

如果泛型填的不对,就执行不了

如果你在泛型中传入了错误的类型(比如试图加载一个 AudioClip 但是传入了 GameObject),不会执行成功,返回 null,而不会发生类型转换的错误(InvalidCastException)。这样能在开发过程中帮助你迅速发现错误。

AudioClip audioClip = Resources.Load<AudioClip>("MyPrefab");  // 错误:MyPrefab 不是 AudioClip
if (audioClip == null)
{
    // 资源加载失败,因为资源不是 AudioClip 类型
    Debug.Log("Failed to load AudioClip");
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/884554.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【CSS】盒子模型

width 宽度 、height 高度 、padding 内边距 、margin 外边距 ( 外边距合并、子元素外边距塌陷问题 )border 边框border-radius 圆角box-shadow 阴影overflow 溢出float 浮动 ( 父元素塌陷问题 ) 盒子模型&#xff08;Box Model &#xff09;是指在网页设计中&#xff0c;用于描…

Linux云计算 |【第四阶段】RDBMS1-DAY2

主要内容&#xff1a; 常用函数&#xff08;函数分类1&#xff1a;单行、分组&#xff1b;函数分类2&#xff1a;字符、数学、日期、流程控制&#xff09;、分组查询group by、连接查询 一、常用函数 1. 按使用方式分类 ① 单行函数 单行函数&#xff08;Scalar Functions&…

老古董Lisp实用主义入门教程(12):白日梦先生的白日梦

白日梦先生的白日梦 白日梦先生已经跟着大家一起学Lisp长达两个月零五天&#xff01; 001 粗鲁先生Lisp再出发002 懒惰先生的Lisp开发流程003 颠倒先生的数学表达式004 完美先生的完美Lisp005 好奇先生用Lisp来探索Lisp006 好奇先生在Lisp的花园里挖呀挖呀挖007 挑剔先生给出…

构建高可用和高防御力的云服务架构第二部分:SLB负载均衡(2/5)

在现代云服务中&#xff0c;负载均衡&#xff08;Load Balancing&#xff09;是一种关键技术&#xff0c;用于优化资源利用、最小化响应时间、提高系统的可伸缩性和可靠性。负载均衡器位于客户端和服务器之间&#xff0c;根据预设的策略将请求分发到多个服务器上&#xff0c;以…

如何使用ssm实现基于web的山东红色旅游信息管理系统的设计与实现

TOC ssm716基于web的山东红色旅游信息管理系统的设计与实现jsp 绪论 1.1研究背景 从古到今&#xff0c;信息的录入&#xff0c;存储&#xff0c;检索都受制于社会生产力的发展&#xff0c;不仅仅浪费大量的人力资源还需要浪费大量的社会物资&#xff0c;并且不能长时间的保…

计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践

计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践 1. 什么是生成对抗网络&#xff1f; 生成对抗网络&#xff08;Generative Adversarial Networks&#xff0c;简称GANs&#xff09;是由Ian Goodfellow等人在2014年提出的一种深度学习模型&#xff0c;主要用于数…

JavaEE: 深入探索TCP网络编程的奇妙世界(三)

文章目录 TCP核心机制TCP核心机制三: 连接管理建立连接(三次握手)断开连接(四次挥手)三次握手/四次挥手 流程简图 TCP核心机制 前一篇文章 JavaEE: 深入探索TCP网络编程的奇妙世界(二) 书接上文~ TCP核心机制三: 连接管理 建立连接(三次握手),断开连接(四次挥手). 这里的次数…

二叉树的前序遍历,中序遍历,后序遍历(非递归方法+C语言代码)

#include<stdlib.h> #include<stdio.h> #include<assert.h> #include<stdbool.h> //定义一个二叉树结点结构体 typedef int ElemTpye; typedef struct TreeNode {ElemTpye data;struct TreeNode* left;struct TreeNode* right; }TreeNode; //创建结点 …

【中间件——基于消息中间件的分布式系统的架构】

1. 基于消息中间件的分布式系统的架构 从上图中可以看出来&#xff0c;消息中间件的是 1&#xff1a;利用可靠的消息传递机制进行系统和系统直接的通讯 2&#xff1a;通过提供消息传递和消息的排队机制&#xff0c;它可以在分布式系统环境下扩展进程间的通讯。 1.1 消息中间件…

影视站群程序大对比,苹果cmsv10 vs海洋cms

在影视站群程序领域&#xff0c;苹果CMSv10和海洋CMS是两款备受站长们青睐的程序。它们分别具备各自的优势&#xff0c;适合不同需求的站群管理和优化。以下是两者的详细对比&#xff0c;并重点介绍苹果CMS的主要优势和插件功能。 苹果CMSv10简介 maccmscn 苹果CMSv10&#x…

CV之OCR:GOT-OCR2.0的简介、安装和使用方法、案例应用之详细攻略

CV之OCR&#xff1a;GOT-OCR2.0的简介、安装和使用方法、案例应用之详细攻略 目录 GOT-OCR2.0的简介 1、更新 GOT-OCR2.0的安装和使用方法 1、安装 安装环境cuda11.8torch2.0.1 安装包 安装Flash-Attention GOT权重&#xff1a;1.43G 2、演示 3、训练 4、评估 GOT-…

记录Mac编译Android源码踩过的坑

学习Android源码&#xff0c;如果电脑配置还不错&#xff0c;最好还是下载一套源码&#xff0c;经过编译后导入到Android Studio中来学习&#xff0c;这样会更加的直观&#xff0c;代码之间的跳转查看会更加方便。因此&#xff0c;笔者决定下载并编译一套源码&#xff0c;以利于…

[Redis][哨兵][下]详细讲解

目录 1.安装部署(基于Docker)1.编排Redis主从节点2.编排Redis-Sentinel节点 2.重新选举1.redis-master宕机之后2.redis-master重启之后3.总结 3.选举原理4.总结 1.安装部署(基于Docker) 1.编排Redis主从节点 编写docker-compose.yml 创建/root/redis/docker-compose.yml&…

【web安全】——信息收集

一、收集域名信息 1.1域名注册信息 工具&#xff1a;站长之家 whois查询 SEO综合查询 1.2子域名收集 原理&#xff1a;字典爆破&#xff0c;通过字典中的各种字符串与主域名拼接&#xff0c;尝试访问。 站长之家 直接查询子域名 ip138.com https://phpinfo.me/domain/ …

StoryMaker 在文本到图像的生成过程中实现一致的字符

StoryMaker 是一种个性化解决方案&#xff0c;它不仅能保持多个角色场景中面部的一致性&#xff0c;还能保持服装、发型和身体的一致性&#xff0c;从而有可能制作出由一系列图像组成的故事。 StoryMaker 生成图像的可视化。 前三行讲述的是 "上班族 "一天的生活&…

创建javaWeb项目(详细版本)2021年2月

1、新建一个java项目 2、点击工程名称&#xff0c;找到add framework support&#xff0c;并点击 建好如图 3、分别在工程目录下创建resourse文件夹和web目录下创建classes和lib文件夹 建好如图 4、file找到 project structure 5、选中resourse 将其mark as sources 6、路径改…

关于frp Web界面-----frp Server Dashboard 和 frp Client Admin UI

Web 界面 官方文档&#xff1a;https://gofrp.org/zh-cn/docs/features/common/ui/ 目前 frpc 和 frps 分别内置了相应的 Web 界面方便用户使用。 客户端 Admin UI 服务端 Dashboard 服务端 Dashboard 服务端 Dashboard 使用户可以通过浏览器查看 frp 的状态以及代理统计信…

godot4.2入门项目 dodge_the_creep学习记录

前言 在学习博客Godot4 你的第一个2d游戏中的项目时&#xff0c;遇到了点小问题&#xff0c;记录一下。 官方项目 传送门 问题 怪兽直接从屏幕中间部分冒出来&#xff0c;以及角色出现时位于屏幕外角色被设置的背景图遮挡 解决方法 1.节点的位置没有对齐&#xff0c;正确示例…

Apache APISIX学习(2):安装Grafana、prometheus

一、Grafana安装 1、介绍 Grafana 是一个监控仪表系统&#xff0c;它是由 Grafana Labs 公司开源的的一个系统监测 (System Monitoring) 工具。它可以大大帮助你简化监控的复杂度&#xff0c;你只需要提供你需要监控的数据&#xff0c;它就可以帮你生成各种可视化仪表。同时它…