OpenHarmony(鸿蒙南向)——平台驱动开发【MIPI DSI】

往期知识点记录:

  • 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
  • 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~
  • 持续更新中……

概述

功能简介

DSI(Display Serial Interface)是由移动行业处理器接口联盟(Mobile Industry Processor Interface (MIPI) Alliance)制定的规范,旨在降低移动设备中显示控制器的成本。它以串行的方式发送像素数据或指令给外设(通常是LCD或者类似的显示设备),或从外设中读取状态信息或像素信息;它定义了主机、图像数据源和目标设备之间的串行总线和通信协议。

MIPI DSI具备高速模式和低速模式两种工作模式,全部数据通道都可以用于单向的高速传输,但只有第一个数据通道才可用于低速双向传输,从属端的状态信息、像素等是通过该数据通道返回。时钟通道专用于在高速传输数据的过程中传输同步时钟信号。

图1显示了简化的DSI接口。从概念上看,符合DSI的接口与基于DBI-2和DPI-2标准的接口具有相同的功能。它向外围设备传输像素或命令数据,并且可以从外围设备读取状态或像素信息。主要区别在于,DSI对所有像素数据、命令和事件进行序列化,而在传统接口中,这些像素数据、命令和事件通常需要附加控制信号才能在并行数据总线上传输。

图 1 DSI发送、接收接口

DSI标准对应D-PHY、DSI、DCS规范,可分为四层:

  • PHY Layer

    PHY层指定传输介质(电导体)、输入/输出电路和从串行比特流中捕获“1”和“0”的时钟机制。这一部分的规范记录了传输介质的特性、信号的电气参数以及时钟与数据通道之间的时序关系。在DSI链路的发送端,并行数据、信号事件和命令按照包组织在协议层转换为包。协议层附加包协议信息和报头,然后通过Lane Management层向PHY发送完整的字节。数据由PHY进行序列化,并通过串行链路发送。DSI链路的接收端执行与发送端相反的操作,将数据包分解为并行的数据、信号事件和命令。如果有多个Lane, Lane管理层将字节分配给单独的物理层,每个Lane一个PHY。

  • Lane Management层

    负责发送和收集数据流到每条Lane。数据Lane的三种操作模式 :espace mode, High-Speed(Burst) mode, Control mode 。

  • Low Level Protocol层

    定义了如何组帧和解析以及错误检测等。

  • Application层

描述高层编码和解析数据流。这一层描述了数据流中包含的数据的更高级的编码和解释。根据显示子系统架构的不同,它可能由具有指定格式的像素或编码的位流组成,或者由显示模块内的显示控制器解释的命令组成。DSI规范描述了像素值、位流、命令和命令参数到包集合中的字节的映射。

运作机制

MIPI DSI软件模块各分层的作用为:

  • 接口层:提供打开设备、写入数据和关闭设备的接口。

  • 核心层:主要提供绑定设备、初始化设备以及释放设备的能力。

  • 适配层:实现其它具体的功能。

说明:
核心层可以调用接口层的函数,核心层通过钩子函数调用适配层函数,从而适配层可以间接的调用接口层函数,但是不可逆转接口层调用适配层函数。

图 2 DSI无服务模式结构图

开发指导

场景介绍

MIPI DSI仅是一个软件层面的概念,主要工作是MIPI DSI资源管理。开发者可以通过使用提供的提供的操作接口,实现DSI资源管理。当驱动开发者需要将MIPI DSI设备适配到OpenHarmony时,需要进行MIPI DSI驱动适配,下文将介绍如何进行MIPI DSI驱动适配。

接口说明

为了保证上层在调用MIPI DSI接口时能够正确的操作硬件,核心层在//drivers/hdf_core/framework/support/platform/include/mipi/mipi_dsi_core.h中定义了以下钩子函数。驱动适配者需要在适配层实现这些函数的具体功能,并与这些钩子函数挂接,从而完成接口层与核心层的交互。

MipiDsiCntlrMethod定义:

struct MipiDsiCntlrMethod { // 核心层结构体的成员函数
    int32_t (*setCntlrCfg)(struct MipiDsiCntlr *cntlr);
    int32_t (*setCmd)(struct MipiDsiCntlr *cntlr, struct DsiCmdDesc *cmd);
    int32_t (*getCmd)(struct MipiDsiCntlr *cntlr, struct DsiCmdDesc *cmd, uint32_t readLen, uint8_t *out);
    void (*toHs)(struct MipiDsiCntlr *cntlr);
    void (*toLp)(struct MipiDsiCntlr *cntlr);
    void (*enterUlps)(struct MipiDsiCntlr *cntlr);                       //【可选】进入超低功耗模式
    void (*exitUlps)(struct MipiDsiCntlr *cntlr);                        //【可选】退出超低功耗模式
    int32_t (*powerControl)(struct MipiDsiCntlr *cntlr, uint8_t enable); //【可选】使能/去使能功耗控制
    int32_t (*attach)(struct MipiDsiCntlr *cntlr);                       //【可选】将一个DSI设备连接上host
};
c

表 1 MipiDsiCntlrMethod成员的钩子函数功能说明

成员函数入参出参返回状态功能
setCntlrCfgcntlr:结构体指针,MipiDsi控制器HDF_STATUS相关状态设置控制器参数
setCmdcntlr:结构体指针,MipiDsi控制器
cmd:结构体指针,指令传入值
HDF_STATUS相关状态向显示设备发送指令
getCmdcntlr:结构体指针,MipiDsi控制器
cmd:传入的命令描述结构体指针
readLen:读取的数据大小
out:uint8_t类型指针,用于存储读取的数据HDF_STATUS相关状态通过发送指令读取数据
toHscntlr:结构体指针,MipiDsi控制器HDF_STATUS相关状态设置为高速模式
toLpcntlr:结构体指针,MipiDsi控制器HDF_STATUS相关状态设置为低电模式

开发步骤

MIPI DSI模块适配包含以下四个步骤:

  1. 实例化驱动入口

    • 实例化HdfDriverEntry结构体成员。
    • 调用HDF_INIT将HdfDriverEntry实例化对象注册到HDF框架中。
  2. 配置属性文件

    • 在device_info.hcs文件中添加deviceNode描述。
    • 【可选】添加mipi_dsi_config.hcs器件属性文件。
  3. 实例化MIPI DSI控制器对象

    • 初始化MipiDsiCntlr成员。
    • 实例化MipiDsiCntlr成员MipiDsiCntlrMethod。

说明:
实例化MipiDsiCntlr成员MipiDsiCntlrMethod,其定义和成员说明见 接口说明 。

  1. 驱动调试

    【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈,数据传输的成功与否等。

开发实例

下方将基于Hi3516DV300开发板以//device/soc/hisilicon/common/platform/mipi_dsi/mipi_tx_hi35xx.c驱动为示例,展示需要厂商提供哪些内容来完整实现设备功能。

  1. 实例化驱动入口

驱动入口必须为HdfDriverEntry(在hdf_device_desc.h中定义)类型的全局变量,且moduleName要和device_info.hcs中保持一致。HdfDriverEntry结构体的函数指针成员需要被驱动适配者操作函数填充,HDF框架会将所有加载的驱动的HdfDriverEntry对象首地址汇总,形成一个类似数组,方便调用。

一般在加载驱动时HDF框架会先调用Bind函数,再调用Init函数加载该驱动。当Init调用异常时,HDF框架会调用Release释放驱动资源并退出。

MIPI DSI驱动入口参考:

    struct HdfDriverEntry g_mipiTxDriverEntry = {
        .moduleVersion = 1,
        .Init = Hi35xxMipiTxInit,          // 挂接MIPI DSI模块Init实例化
        .Release = Hi35xxMipiTxRelease,    // 挂接MIPI DSI模块Release实例化
        .moduleName = "HDF_MIPI_TX",       // 【必要且与HCS文件中里面的moduleName匹配】
    };
    HDF_INIT(g_mipiTxDriverEntry);         // 调用HDF_INIT将驱动入口注册到HDF框架中
    c
  1. 配置属性文件 一般来说,驱动开发首先需要mipi_dsi_config.hcs配置文件,在其中配置器件属性,并在//vendor/hisilicon/hispark_taurus/hdf_config/device_info/device_info.hcs文件中添加deviceNode描述。deviceNode与配置属性的对应关系是依靠deviceMatchAttr字段来完成的。只有当deviceNode下的deviceMatchAttr字段与配置属性文件中的match_attr字段完全相同时,驱动才能正确读取配置数据。器件属性值与核心层MipiDsiCntlr成员的默认值或限制范围有密切关系,deviceNode信息与驱动入口注册相关。但本例中MIPI DSI控制器无需配置额外属性,驱动适配者如有需要,则需要在device_info.hcs文件的deviceNode增加deviceMatchAttr信息,以及增加mipi_dsi_config.hcs文件。

无服务模式device_info.hcs文件中设备节点也代表着一个设备对象,如果存在多个设备对象,则按需添加,注意服务名与驱动私有数据匹配的关键字名称必须唯一。其中各项参数如表2所示:

表 2 device_info.hcs节点参数说明

成员名
policy驱动服务发布的策略,MIPI DSI控制器具体配置为0,表示驱动不需要发布服务
priority驱动启动优先级(0-200),值越大优先级越低。MIPI DSI控制器具体配置为150
permission驱动创建设备节点权限,MIPI DSI控制器具体配置为0664
moduleName驱动名称,MIPI DSI控制器固定为HDF_MIPI_TX
serviceName驱动对外发布服务的名称,MIPI DSI控制器服务名设置为HDF_MIPI_TX
deviceMatchAttr驱动私有数据匹配的关键字,MIPI DSI控制器没有使用,可忽略

device_info.hcs 配置参考:

    root {
        device_info {
            match_attr = "hdf_manager";
            platform :: host {
                hostName = "platform_host";
                priority = 50;
                device_mipi_dsi:: device {
                    device0 :: deviceNode {
                    policy = 0;
                    priority = 150;
                    permission = 0644;
                    moduleName = "HDF_MIPI_TX";   // 【必要】用于指定驱动名称,需要与期望的驱动Entry中的moduleName一致。
                    serviceName = "HDF_MIPI_TX";  // 【必要且唯一】驱动对外发布服务的名称。
                    }
                }
            }
        }
    }
    c
  1. 实例化MIPI DSI控制器对象

完成驱动入口注册之后,下一步就是以核心层MipiDsiCntlr对象的初始化为核心,包括驱动适配者自定义结构体(传递参数和数据),实例化MipiDsiCntlr成员MipiDsiCntlrMethod(让用户可以通过接口来调用驱动底层函数),实现HdfDriverEntry成员函数(Bind、Init、Release)。

  • 自定义结构体参考

从驱动的角度看,自定义结构体是参数和数据的载体,一般来说,config文件中的数值也会用来初始化结构体成员,但本例的MIPI DSI无器件属性文件,故基本成员结构与MipiDsiCntlr无太大差异。

        typedef struct {
            unsigned int devno;                // 设备号
            short laneId[LANE_MAX_NUM];        // Lane号
            OutPutModeTag outputMode;          // 输出模式选择:刷新模式,命令行模式或视频流模式
            VideoModeTag videoMode;            // 显示设备的同步模式
            OutputFormatTag outputFormat;      // 输出DSI图像数据格式:RGB或YUV
            SyncInfoTag syncInfo;              // 时序相关的设置
            unsigned int phyDataRate;          // 数据速率,单位Mbps
            unsigned int pixelClk;             // 时钟,单位KHz
        } ComboDevCfgTag;

        struct MipiDsiCntlr {
            struct IDeviceIoService service;
            struct HdfDeviceObject *device;
            unsigned int devNo;                // 设备号
            struct MipiCfg cfg;
            struct MipiDsiCntlrMethod *ops;
            struct OsalMutex  lock;
            void *priv;
        };
        c
  • MipiDsiCntlr成员钩子函数结构体MipiDsiCntlrMethod的实例化。
        static struct MipiDsiCntlrMethod g_method = {
            .setCntlrCfg = Hi35xxSetCntlrCfg,
            .setCmd = Hi35xxSetCmd,
            .getCmd = Hi35xxGetCmd,
            .toHs = Hi35xxToHs,
            .toLp = Hi35xxToLp,
        };
        c
  • Init函数开发参考

入参:
HdfDeviceObject是整个驱动对外暴露的接口参数,具备HCS配置文件的信息。

返回值:
HDF_STATUS相关状态 (表3为部分展示,如需使用其他状态,可参考//drivers/hdf_core/interfaces/inner_api/utils/hdf_base.h中HDF_STATUS的定义)。

表 3 HDF_STATUS相关状态说明

状态(值)问题描述
HDF_ERR_INVALID_OBJECT控制器对象非法
HDF_ERR_MALLOC_FAIL内存分配失败
HDF_ERR_IOI/O 错误
HDF_SUCCESS初始化成功
HDF_FAILURE初始化失败

函数说明:

MipiDsiCntlrMethod的实例化对象的挂载,调用MipiDsiRegisterCntlr,以及其他驱动适配者自定义初始化操作。

        static int32_t Hi35xxMipiTxInit(struct HdfDeviceObject *device)
        {
            int32_t ret;
            g_mipiTx.priv = NULL;                            // g_mipiTx是定义的全局变量
                                                             // static struct MipiDsiCntlr g_mipiTx {
                                                             //     .devNo=0
                                                             // };
            g_mipiTx.ops = &g_method;                        // MipiDsiCntlrMethod的实例化对象的挂载
            ret = MipiDsiRegisterCntlr(&g_mipiTx, device);   // 【必要】调用核心层函数和g_mipiTx初始化核心层全局变量
            ......
            return MipiTxDrvInit(0);                         // 【必要】驱动适配者对设备的初始化,形式不限
        }

        // mipi_dsi_core.c核心层
        int32_t MipiDsiRegisterCntlr(struct MipiDsiCntlr *cntlr, struct HdfDeviceObject *device)
        {
            ......
            // 定义的全局变量:static struct MipiDsiHandle g_mipiDsihandle[MAX_CNTLR_CNT];
            if (g_mipiDsihandle[cntlr->devNo].cntlr == NULL) {
                (void)OsalMutexInit(&g_mipiDsihandle[cntlr->devNo].lock);
                (void)OsalMutexInit(&(cntlr->lock));

                g_mipiDsihandle[cntlr->devNo].cntlr = cntlr; // 初始化MipiDsiHandle成员
                g_mipiDsihandle[cntlr->devNo].priv = NULL;
                cntlr->device = device;                      // 使HdfDeviceObject与MipiDsiHandle可以相互转化的前提
                device->service = &(cntlr->service);         // 使HdfDeviceObject与MipiDsiHandle可以相互转化的前提
                cntlr->priv = NULL;
                ......
                return HDF_SUCCESS;
            }
            ......
            return HDF_FAILURE;
        }
        c
  • Release函数开发参考
    入参:
    HdfDeviceObject是整个驱动对外暴露的接口参数,具备HCS配置文件的信息。

返回值:
无。

函数说明:

该函数需要在驱动入口结构体中赋值给Release接口,当HDF框架调用Init函数初始化驱动失败时,可以调用Release释放驱动资源,该函数中需包含释放内存和删除控制器等操作。

说明:
所有强制转换获取相应对象的操作前提是在Init函数中具备对应赋值的操作。

        static void Hi35xxMipiTxRelease(struct HdfDeviceObject *device)
        {
            struct MipiDsiCntlr *cntlr = NULL;
            ......
            cntlr = MipiDsiCntlrFromDevice(device); // 这里有HdfDeviceObject到MipiDsiCntlr的强制转化
                                                    // return (device == NULL) ? NULL : (struct MipiDsiCntlr *)device->service;
            ......
            MipiTxDrvExit();                        // 【必要】对设备所占资源的释放
            MipiDsiUnregisterCntlr(&g_mipiTx);      // 空函数
            g_mipiTx.priv = NULL;
            HDF_LOGI("%s: unload mipi_tx driver 1212!", __func__);
        }
        c
  1. 驱动调试

【可选】针对新增驱动程序,建议验证驱动基本功能,例如挂载后的信息反馈。

最后

经常有很多小伙伴抱怨说:不知道学习鸿蒙开发哪些技术?不知道需要重点掌握哪些鸿蒙应用开发知识点?

为了能够帮助到大家能够有规划的学习,这里特别整理了一套纯血版鸿蒙(HarmonyOS Next)全栈开发技术的学习路线,包含了鸿蒙开发必掌握的核心知识要点,内容有(ArkTS、ArkUI开发组件、Stage模型、多端部署、分布式应用开发、WebGL、元服务、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、OpenHarmony驱动开发、系统定制移植等等)鸿蒙(HarmonyOS NEXT)技术知识点。

在这里插入图片描述

《鸿蒙 (Harmony OS)开发学习手册》(共计892页):https://gitcode.com/HarmonyOS_MN/733GH/overview

如何快速入门?

1.基本概念
2.构建第一个ArkTS应用
3.……

鸿蒙开发面试真题(含参考答案):

在这里插入图片描述

《OpenHarmony源码解析》:

  • 搭建开发环境
  • Windows 开发环境的搭建
  • Ubuntu 开发环境搭建
  • Linux 与 Windows 之间的文件共享
  • ……
  • 系统架构分析
  • 构建子系统
  • 启动流程
  • 子系统
  • 分布式任务调度子系统
  • 分布式通信子系统
  • 驱动子系统
  • ……

图片

OpenHarmony 设备开发学习手册:https://gitcode.com/HarmonyOS_MN/733GH/overview

图片
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/884367.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小阿轩yx-案例:代码管理系统简介与部署

小阿轩yx-案例:代码管理系统简介与部署 前言 开发一个项目时,如果只有几十行代码或几百行代码时维护还算简单,但是代码数量达到一定程度或两三个人共同开发一个项目时,就很容易会出现代码混乱、冲突、排错难等问题。代码编写完成…

【软件测试】如何设计测试用例? 设计测试用例常用的方法.

目录 一.什么是测试用例?二.总体设计测试用例的万能公式.2.1 功能性能界面兼容易用安全2.2 弱网测试2.3 安装卸载测试. 三. 常用设计具体测试用例的方法3.1 等价类3.2 边界值3.3 正交法3.3.1 正交表3.3.2 如何设计正交表,并根据正交表编写测试用例 3.4 判定表法3.4.1 根据判定…

828华为云征文 | 解锁高效项目管理,Zentao在华为云Flexusx容器化部署与应用指南

前言 在当今快速迭代的商业环境中,高效且灵活的项目管理成为企业竞争力的关键。华为云Flexusx实例,以其灵活的vCPU内存配比、热变配功能及按需计费模式,为项目管理软件如Zentao的部署提供了理想平台。Flexusx实例采用按需计费的灵活定价模式&…

Ansible流程控制-条件_循环_错误处理_包含导入_块异常处理

文章目录 Ansible流程控制介绍1. 条件判断2. 循环3. 循环控制4. 错误处理5. 包含和导入6. 块和异常处理7. 角色的流程控制*include_tasks、import_tasks_include之间的区别 条件语句再细说且、或、非、是模糊条件when指令的详细使用方法 循环语句再细说如何使用使用item变量结合…

甄选范文“论软件需求管理”,软考高级论文,系统架构设计师论文

论文真题 软件需求管理是一个对系统需求变更了解和控制的过程。需求管理过程与需求开发过程相互关联,初始需求导出的同时就要形成需求管理规划,一旦启动了软件开发过程,需求管理活动就紧密相伴。 需求管理过程中主要包含变更控制、版本控制、需求跟踪和需求状态跟踪等4项活…

???Ansible-使用roles

文章目录 一、Ansible的内置的或官方推荐创建的目录及文件介绍roles目录解释1、roles/自定义角色名目录下2、roles/自定义角色名目录/tasks目录下3、roles/自定义角色名目录/handlers目录下4、roles/自定义角色名目录/templates目录下5、roles/自定义项目名目录/files目录下6、…

SSM超市售卖管理系统-计算机毕业设计源码23976

目 录 摘要 Abstract 1 绪论 1.1研究的背景和意义 1.2研究内容 1.3论文结构与章节安排 2 开发技术介绍 2.1 SSM框架 2.2 MySQL数据库 3 超市售卖管理系统系统分析 3.1 可行性分析 3.2 系统流程分析 3.2.1 数据流程 3.3.2 业务流程 3.3 系统功能分析 3.3.1 功…

港科夜闻 | 香港科大颁授荣誉大学院士予五位杰出人士

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大颁授荣誉大学院士予五位杰出人士。香港科大9月24日向五位杰出人士颁授荣誉大学院士,他们分别为包弼德教授、简吴秋玉女士、高秉强教授、吴永顺先生及容永祺博士(按姓氏英文字母排序)。荣誉大学院士颁…

BUG——IMX6ULL编译正点原子Linux内核报错

最初编译的是正点原子改过的Linux内核,可能是版本问题,一直报错,无法成功编译。然后换成NXP官方Linux内核6.6版本,初始编译虽然也报各种错,但都是缺少库或相关工具,全部安装后就可以成功编译出镜像了&#…

WiFi无线连接管理安卓设备工具:WiFiADB

介绍 WiFi ADB 使您能够通过 WiFi TCP/IP 连接直接在设备上轻松调试和测试 Android 应用,无需使用 USB 数据线。在启用 WiFi 上的 ADB 后,打开控制台将电脑连接到设备。 手机和电脑在同一个WiFi然后电脑上运行adb connect x.x.x.x:x命令即可 下载 谷…

IoT网关的主要功能有哪些?天拓四方

在数字化浪潮席卷全球的今天,物联网(IoT)技术凭借其独特的优势,逐渐在各个领域展现出强大的生命力。而IoT网关,作为连接物理世界与数字世界的桥梁,其在物联网体系中的作用愈发凸显。 一、数据聚合与预处理…

leetcode每日一题day15(24.9.25)——公司命名

思路:首先如果没有相同的后缀,则无论只要不是相同的首字母交换都不会出现重复情况,如果有重复后缀,则还需多增加个不能和,首字符与另一相同后缀字串的首字符相同的字串交换。 主要矛盾已经明确,则可对矛盾…

Redis集群的两种方式

1.Redis集群 1.1 搭建主从集群 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写的分离。一般情况下,主节点负责写操作,从节点负责读操作。而从节点如何得知数据呢&#xff…

SpringBoot文档管理系统:架构与功能

第2章相关技术 2.1 Java技术介绍 Java语言擅长开发互联网类应用和企业级应用,现在已经相当的成熟,而且也是目前使用最多的编程语言之一。Java语言具有很好的面向对象性,可以符合人的思维模式进行设计,封装是将对象的属性和方法尽可…

【4.6】图搜索算法-DFS和BFS解合并二叉树

一、题目 给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。你需要将他们合并为一个新的二叉树。合并的规则是 如果两个节点重叠,那么将他们的 值相加作为节点合并后的新值,否则不为 NUL L…

DERT目标检测源码流程图main.py的执行

DERT目标检测源码流程图main.py的执行 官网预测脚本 补充官网提供的预测部分的代码信息。 from PIL import Image import requests import matplotlib.pyplot as pltimport torch from torch import nn from torchvision.models import resnet50 import torchvision.transform…

网页设计html心得

一,认识网页 说到网页,其实大家并不陌生 1.1网页究竟是什么? 网页主要由文字、图像和超链接等元素构成。当然,除了这些元素,网页中还可以包含音频、视频以及Flash等。 1.2网页是如何形成的呢? 1.特殊的…

笔记整理—linux进程部分(1)进程终止函数注册、进程环境、进程虚拟地址

对于mian()函数而言,执行前也需要先执行一段引导代码才会去执行main()函数,该部分的代码包含构建c语言的运行环境等配置,如清理bss段等。 在使用gcc去编译程序的时候,使用gcc -v xxx.c可见链接过程。在编译完成后可见xxx.out文件。…

动态规划算法:12.简单多状态 dp 问题_打家劫舍_C++

目录 题目链接:LCR 089. 打家劫舍 - 力扣(LeetCode) 一、题目解析 题目: 解析: 二、算法原理 1、状态表示 状态表示: 2、状态转移方程 状态转移方程推理: 3、初始化 dp表初始化: 特殊…

【优选算法】(第七篇)

目录 ⽔果成篮(medium) 题目解析 讲解算法原理 编写代码 找到字符串中所有字⺟异位词(medium) 题目解析 讲解算法原理 编写代码 ⽔果成篮(medium) 题目解析 1.题目链接:. - 力扣&#…