【深度学习】03-神经网络01-4 神经网络的pytorch搭建和参数计算

# 计算模型参数,查看模型结构,我们要查看有多少参数,需要先安装包

pip install torchsummary

import torch
import torch.nn as nn
from torchsummary import summary # 导入 summary 函数,用于计算模型参数和查看模型结构

# 创建神经网络模型类
class Model(nn.Module):
    # 初始化模型的构造函数
    def __init__(self):
        super().__init__()  # 调用父类 nn.Module 的初始化方法
        # 定义第一个全连接层(线性层),3个输入特征,3个输出特征
        self.linear1 = nn.Linear(3, 3)  
        # 使用 Xavier 正态分布初始化第一个全连接层的权重
        nn.init.xavier_normal_(self.linear1.weight)
        
        # 定义第二个全连接层,输入 3 个特征,输出 2 个特征
        self.linear2 = nn.Linear(3, 2)
        # 使用 Kaiming 正态分布初始化第二个全连接层的权重,适合 ReLU 激活函数
        nn.init.kaiming_normal_(self.linear2.weight)
        
        # 定义输出层,输入 2 个特征,输出 2 个特征
        self.out = nn.Linear(2, 2)
        
    # 定义前向传播过程 (forward 函数会自动执行,类似于模型的"推理"过程)
    def forward(self, x):
        # 第一个全连接层运算
        x = self.linear1(x)
        # 使用 Sigmoid 激活函数
        x = torch.sigmoid(x)
        
        # 第二个全连接层运算
        x = self.linear2(x)
        # 使用 ReLU 激活函数
        x = torch.relu(x)
        
        # 输出层运算
        x = self.out(x)
        # 使用 Softmax 激活函数,将输出转化为概率分布
        # dim=-1 表示在最后一个维度(通常是输出的类别维度)上做 softmax 归一化
        x = torch.softmax(x, dim=-1)
        return x
    
if __name__ == '__main__':
    # 实例化神经网络模型
    my_model = Model()
    
    # 随机生成一个形状为 (5, 3) 的输入数据,表示 5 个样本,每个样本有 3 个特征
    my_data = torch.randn(5, 3)
    print("mydata shape", my_data.shape)
    
    # 通过模型进行前向传播,输出模型的预测结果
    output = my_model(my_data)
    print("output shape", output.shape)
    
    # 计算并显示模型的参数总量以及模型结构
    summary(my_model, input_size=(3,), batch_size=5)
    
    # 查看模型中所有的参数,包括权重和偏置项(bias)
    print("-----查看模型参数w 和 b  -----")
    for name, parameter in my_model.named_parameters():
        print(name, parameter)

mydata shape torch.Size([5, 3])
output shape torch.Size([5, 2])
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Linear-1                     [5, 3]              12
            Linear-2                     [5, 2]               8
            Linear-3                     [5, 2]               6
================================================================
Total params: 26
Trainable params: 26
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.00
Estimated Total Size (MB): 0.00
----------------------------------------------------------------
-----查看模型参数w 和 b  -----
linear1.weight Parameter containing:
tensor([[ 0.4777, -0.2076,  0.4900],
        [-0.1776,  0.4441,  0.6924],
        [-0.5449,  1.6153,  0.0243]], requires_grad=True)
linear1.bias Parameter containing:
tensor([0.4524, 0.2902, 0.4897], requires_grad=True)
linear2.weight Parameter containing:
tensor([[-0.0510, -1.2731, -0.7253],
        [-0.6112,  0.1189, -0.4903]], requires_grad=True)
linear2.bias Parameter containing:
tensor([0.5391, 0.2552], requires_grad=True)
out.weight Parameter containing:
tensor([[-0.3271, -0.3483],
        [-0.0619, -0.0680]], requires_grad=True)
out.bias Parameter containing:
tensor([-0.5508,  0.5895], requires_grad=True)
 

 代码输出结果解读

​​​​​​​

这个代码的输出展示了两部分内容:

  1. 数据维度和模型输出维度

    • mydata shape torch.Size([5, 3])

    • output shape torch.Size([5, 2])

  2. 模型的结构、参数数量和每一层的权重与偏置

    • 模型的层结构、每一层的输出形状,以及每一层的参数数量。

    • 每层的权重(weight)和偏置(bias)的具体数值。

让我们详细分析每一部分的输出。

1. 输入数据和输出数据的形状

mydata shape torch.Size([5, 3])

这部分的输出说明:

  • 输入数据的形状(5, 3),表示有 5 个样本,每个样本有 3 个特征。这与模型定义时的输入层 nn.Linear(3, 3) 是一致的,输入层期望接收 3 个特征。

output shape torch.Size([5, 2])

这部分的输出说明:

  • 模型输出的形状 (5, 2),表示 5 个样本的输出,每个样本的输出有 2 个值。由于模型的输出层定义为 nn.Linear(2, 2),它接收 2 个输入特征并输出 2 个值,符合预期。

2. 模型结构和参数

模型结构和参数信息是通过 summary() 函数生成的,它列出了每一层的名称、输出形状和参数数量。

详细输出解释:
----------------------------------------------------------------
      Layer (type)               Output Shape         Param #
================================================================
          Linear-1                     [5, 3]             12
          Linear-2                     [5, 2]               8
          Linear-3                     [5, 2]               6
================================================================
Total params: 26
Trainable params: 26
Non-trainable params: 0
----------------------------------------------------------------
线性层 1(Linear-1
  • 层的类型Linear,这是一个全连接层,定义为 nn.Linear(3, 3)

  • 输出形状[5, 3],表示输入了 5 个样本,每个样本有 3 个特征,经过该层的输出仍然是 5 个样本,每个样本有 3 个特征。

  • 参数数量:12,其中 9 个是权重参数(3 x 3 的权重矩阵),另外 3 个是偏置项。

线性层 2(Linear-2
  • 层的类型Linear,定义为 nn.Linear(3, 2),将 3 个输入特征映射到 2 个输出特征。

  • 输出形状[5, 2],表示输入了 5 个样本,每个样本有 2 个输出特征。

  • 参数数量:8,其中 6 个是权重参数(3 x 2 的权重矩阵),另外 2 个是偏置项。

输出层(Linear-3
  • 层的类型Linear,定义为 nn.Linear(2, 2),接收 2 个输入特征,输出 2 个特征。

  • 输出形状[5, 2],表示 5 个样本,每个样本的输出为 2 个特征。

  • 参数数量:6,其中 4 个是权重参数(2 x 2 的权重矩阵),另外 2 个是偏置项。

参数统计
  • 总参数数量:26,模型中所有可训练参数(包括权重和偏置)的总数量。

  • 可训练参数:26,模型中所有参与训练的参数。这里所有的参数都是可训练的(requires_grad=True),没有非可训练的参数。

  • 非可训练参数:0,说明模型中没有被设置为不可训练的参数。

3. 查看每一层的权重和偏置

这一部分输出列出了每一层的具体参数(权重和偏置)的值。

linear1.weight:
tensor([[ 0.4777, -0.2076, 0.4900],
      [-0.1776, 0.4441, 0.6924],
      [-0.5449, 1.6153, 0.0243]], requires_grad=True)

这是 linear1 层的权重矩阵,形状是 (3, 3)。由于 linear1nn.Linear(3, 3),它的权重矩阵也是 3 行 3 列。权重参数是使用 Xavier 初始化(nn.init.xavier_normal_)初始化的。

linear1.bias:
tensor([0.4524, 0.2902, 0.4897], requires_grad=True)

这是 linear1 层的偏置项,形状是 (3,),因为每个输出特征对应一个偏置值。

linear2.weight:
tensor([[-0.0510, -1.2731, -0.7253],
      [-0.6112, 0.1189, -0.4903]], requires_grad=True)

这是 linear2 层的权重矩阵,形状是 (2, 3),因为 linear2nn.Linear(3, 2),需要 3 个输入特征映射到 2 个输出特征。权重是使用 Kaiming 初始化nn.init.kaiming_normal_初始化的。

linear2.bias:
tensor([0.5391, 0.2552], requires_grad=True)

这是 linear2 层的偏置项,形状是 (2,),因为每个输出特征对应一个偏置值。

out.weight:
tensor([[-0.3271, -0.3483],
      [-0.0619, -0.0680]], requires_grad=True)

这是输出层 out 的权重矩阵,形状是 (2, 2),因为 outnn.Linear(2, 2),接收 2 个输入特征并输出 2 个特征。

out.bias:
tensor([-0.5508, 0.5895], requires_grad=True)

这是输出层 out 的偏置项,形状是 (2,)

总结

  • 这段代码展示了一个简单的神经网络模型,包含 3 个全连接层(线性层),每层的输入输出特征数量逐步缩小。

  • 我们通过 summary() 查看了模型的整体结构,展示了每一层的输出形状和参数数量,总共有 26 个参数。

  • 每一层的权重和偏置参数值被输出,展示了它们是如何被初始化的(通过 Xavier 和 Kaiming 初始化)。

  • 该模型的前向传播通过激活函数(sigmoidReLU)以及 softmax 将输出转化为概率分布。

​​​​​​​​​​​​​​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/884077.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

nginx+php+postgresql搭建漏洞靶场

经过我多番查找,最终得出一个结论,dvwa暂时不支持 postgresql 本文给大家提供一个思路,千万不要轻易模仿 更新系统包列表 首先,打开终端并更新你的系统包列表: sudo apt updatesudo apt upgrade -y安装必要的软件包 安装Nginx、PHP、PostgreSQL以及一些必要的PHP扩展:…

基于BeagleBone Black的网页LED控制功能(flask+gpiod)

目录 项目介绍硬件介绍项目设计开发环境功能实现控制LED外设构建Webserver 功能展示项目总结 👉 【Funpack3-5】基于BeagleBone Black的网页LED控制功能 👉 Github: EmbeddedCamerata/BBB_led_flask_web_control 项目介绍 基于 BeagleBoard Black 开发板…

搜索引擎onesearch3实现解释和升级到Elasticsearch v8系列(四)-搜索

搜索 搜索内容比较多,onesearch分成两部分,第一部分,Query构建,其中包括搜索词设置,设置返回字段,filter,高亮;第二部分分页和排序。第一部分是映射引擎负责,映射通用表…

HAL+M4学习记录_2

一、Boot配置 内存地址是固定的,代码从0x0000 0000开始,而数据从0x2000 0000开始,F4支持三种不同的boot模式 复位芯片时,在SYSCLK的第4个上升沿BOOT引脚值被锁存,STM32F407通过此时BOOT[1:0]引脚值选择Boot模式 BOOT1…

深度学习(入门)03:监督学习

1、监督学习简介 监督学习(Supervised Learning)是一种重要的机器学习方法,它的目标是通过“已知输入特征”来预测对应的标签。在监督学习中,每一个“特征-标签”对被称为样本(example),这些样…

物联网行业中模组的AT指令详解以及使用

01 概述 AT 命令(AT Commands)最早是由发明拨号调制解调器(MODEM)的贺氏公司(Hayes)为了控制 MODEM 而发明的控制协议。后来随着网络带宽的升级,速度很低的拨号 MODEM 基本退出一般使用市场&am…

【含文档】基于Springboot+Vue的高校师资管理系统(含源码+数据库+lw)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统定…

深入理解 `torch.nn.Linear`:维度变换的过程详解与实践(附图、公式、代码)

在深度学习中,线性变换是最基础的操作之一。PyTorch 提供了 torch.nn.Linear 模块,用来实现全连接层(Fully Connected Layer)。在使用时,理解维度如何从输入映射到输出,并掌握其具体的变换过程,…

宠物空气净化器有必要买吗?希喂、霍尼韦尔和352哪款更推荐?

国庆假终于要来了,对于我这个上班族而言,除了春节假期最期待的就是这个国庆假,毕竟假期这么长,家里还有一只小猫咪,一直都没时间陪它,终于给我找到时间带它会老家玩一趟了。 我跟我妈说的时候,…

时序必读论文13|ICLR24 “又好又快”的线性SOTA时序模型FITS

论文标题:FITS: Modeling Time Series with 10k Parameters 开源代码:https://anonymous.4open.science/r/FITS/README.md 前言 FITS(Frequency Interpolation Time Series Analysis Baseline)这篇文章发表于ICLR2024&#xff…

鸿蒙开发(NEXT/API 12)【硬件(Pen Kit)】手写笔服务

Pen Kit(手写笔服务)是华为提供的一套手写套件,提供笔刷效果、笔迹编辑、报点预测、一笔成形和全局取色的功能。手写笔服务可以为产品带来优质手写体验,为您创造更多的手写应用场景。 目前Pen Kit提供了四种能力:手写…

C++入门day5-面向对象编程(终)

C入门day4-面向对象编程(下)-CSDN博客 本节是我们面向对象内容的最终篇章,不是说我们的C就学到这里。如果有一些面向对象的基础知识没有讲到,后面会发布在知识点补充专栏,全都是干货满满的。 https://blog.csdn.net/u…

2024-09-27 buildroot C和语言将 中文的GBK编码转换为 UTF-8 的代码, printf 显示出来,使用 iconv 库去实现。

一、GBK 的英文全称是 "Guobiao Kuozhan",意为 "National Standard Extended"。它是对 GB2312 编码的扩展,用于表示更多汉字和符号 GBK(国标扩展汉字编码)是一种用于简体中文和繁体中文字符的编码方式&#x…

Python 从入门到实战30(高级文件的操作)

我们的目标是:通过这一套资料学习下来,通过熟练掌握python基础,然后结合经典实例、实践相结合,使我们完全掌握python,并做到独立完成项目开发的能力。 上篇文章我们讨论了操作目录的相关知识。今天我们将学习一下高级文…

Mac系统Docker中SQLserver数据库文件恢复记录

Mac系统Docker中SQLserver数据库文件恢复记录 Mac想要安装SQLsever,通过docker去拉去镜像是最简单方法。 一、下载Docker Docker 下载安装: 需要‘科学上网’ 才能访问到docker官网。( https://docs.docker.com/desktop/install/mac-ins…

C语言进阶版第12课—字符函数和字符串函数1

文章目录 1. 字符分类函数1.1 库函数iscntrl1.2 库函数isspace1.3 库函数islower和isupper 2. 字符转换函数3. strlen函数的使用和模拟实现3.1 strlen函数的使用3.2 strlen函数的模拟实现 4. strcpy函数的使用和模拟实现4.1 strcpy函数的使用4.2 strcpy函数的模拟实现 5. strca…

C++读取txt文件中的句子在终端显示,同时操控鼠标滚轮(涉及:多线程,产生随机数,文件操作等)

文章目录 🌕运行效果🌕功能描述🌕代码🌙mian.cpp🌙include⭐MouseKeyControl.h⭐TipsManagement.h 🌙src⭐MouseControl.cpp⭐TipsManagement.cpp 🌕运行效果 🌕功能描述 线程一&am…

web前端-CSS引入方式

一、内部样式表 内部样式表(内嵌样式表)是写到html页面内部,是将所有的 CSS 代码抽取出来,单独放到一个<styie>标签中。 注意: ① <style>标签理论上可以放在 HTML文档的任何地方&#xff0c;但一般会放在文档的<head>标签中 ② 通过此种方式&#xff0c;可…

开发提效的工具tabby快速入门

1.什么是tabby&#xff1f; Tabby is an open-source, self-hosted AI coding assistant. With Tabby, every team can set up its own LLM-powered code completion server with ease. 官方网站&#xff1a;https://tabby.tabbyml.com/ 2.tabby服务安装(Hugging Face Spaces…

虚幻引擎的三种输入模式和将控件显示到屏幕上

首先要知道一个概念 , HUD 和 Input 都是由 PlayerController 来控制的 而虚幻的Input控制模式有三种 Set Input Mode Game Only (设置输入模式仅限游戏): 视角会跟着鼠标旋转 , 就是正常游戏的模式 , 这也是游戏默认输入模式 Set Input Mode UI Only (设置输入模式仅限UI): …