文章目录
- Task
- Baseline
- FGSM (Fast Gradient Sign Method (FGSM)
- I-FGSM(Iterative Fast Gradient Sign Method)
- MI-FGSM(Momentum Iterative Fast Gradient Sign Method)
- M-DI2-FGSM(Diverse Input Momentum Iterative Fast Gradient Sign Method)
- Report
- fgsm attack
- Jepg Compression
Task
黑箱攻击(Blackbox Attack)
采用CIFAR-10数据集经助教筛选,黑箱攻击的核心是:如果你有目标网络的训练数据,你可以训练一个proxy network,用这个proxy network生成attacked objects。
Baseline
- Simple baseline (acc <= 0.70)
- Hints: FGSM
- Expected running time: 1.5 mins on T4
- Medium baseline (acc <= 0.50)
- Hints: Ensemble Attack + ensemble random few model + IFGSM
- Expected running time: 5 mins on T4
- Strong baseline (acc <= 0.25)
- Hints: Ensemble Attack + ensemble many models + MIFGSM
- Expected running time: 5.5 mins on T4
- Boss baseline (acc <= 0.10)
- Hints: Ensemble Attack + ensemble many models + DIM-MIFGSM
- Expected running time: 8 mins on T4
主要就是以下这几个方法,具体的理论写在ipynb中了
Implement non-targeted adversarial attack method
a. FGSM
b. I-FGSM
c. MI-FGSM
Increase attack transferability by Diverse input (DIM)
Attack more than one proxy model - Ensemble attack
FGSM (Fast Gradient Sign Method (FGSM)
$$
x{adv}的目标是J(x{real},y)最大\
x^{adv} = x^{real} + ϵ ⋅ sign(\frac{\partial{J(x^{real},y)}}{\partial{x}0})
$$
I-FGSM(Iterative Fast Gradient Sign Method)
x 0 a d v = x r e a l f o r t = 1 t o n u m _ i t e r : x t + 1 a d v = x ∗ t a d v + α ⋅ s i g n ( ∇ ∗ x J ( x t a d v , y ) ) c l i p x t a d v \begin{aligned}&\boldsymbol{x}_0^{adv}=\boldsymbol{x}^{real}\\&\mathrm{for~t=1~to~num\_iter:}\\&\boxed{\boldsymbol{x}_{t+1}^{adv}=\boldsymbol{x}*_t^{adv}+\alpha\cdot\mathrm{sign}(\nabla_*{\boldsymbol{x}}J(\boldsymbol{x}_t^{adv},y))}\\&\mathrm{clip~}\boldsymbol{x}_t^{adv}\end{aligned} x0adv=xrealfor t=1 to num_iter:xt+1adv=x∗tadv+α⋅sign(∇∗xJ(xtadv,y))clip xtadv
其中, α \alpha α是step size
MI-FGSM(Momentum Iterative Fast Gradient Sign Method)
使用momentum来稳定更新方向,并摆脱糟糕的局部最大值
KaTeX parse error: Got function '\boldsymbol' with no arguments as subscript at position 112: …t+\frac{\nabla_\̲b̲o̲l̲d̲s̲y̲m̲b̲o̲l̲{x}J(\boldsymbo…
其中
g
g
g是momentum
M-DI2-FGSM(Diverse Input Momentum Iterative Fast Gradient Sign Method)
T ( X n a d v ; p ) = { T ( X n a d v ) with probability p X ∗ n a d v with probability 1 − p e.g. DIM + MI-FGSM g ∗ n + 1 = μ ⋅ g n + ∇ X L ( T ( X n a d v ; p ) , y t r u e ; θ ) ∣ ∣ ∇ X L ( T ( X n a d v ; p ) , y t r u e ; θ ) ∣ ∣ 1 T(X_n^{adv};p)=\begin{cases}T(X_n^{adv})&\text{ with probability }p\\X*_n^{adv}&\text{ with probability }1-p\end{cases}\\\text{e.g. DIM + MI-FGSM}\\g_*{n+1}=\mu\cdot g_n+\frac{\nabla_XL(T(X_n^{adv};p),y^{\mathrm{true}};\theta)}{||\nabla_XL(T(X_n^{adv};p),y^{\mathrm{true}};\theta)||_1} T(Xnadv;p)={T(Xnadv)X∗nadv with probability p with probability 1−pe.g. DIM + MI-FGSMg∗n+1=μ⋅gn+∣∣∇XL(T(Xnadv;p),ytrue;θ)∣∣1∇XL(T(Xnadv;p),ytrue;θ)
这里的L可以用CrossEntropyLoss求解
Report
fgsm attack
# original image
path = f'dog/dog2.png'
im = Image.open(f'./data/{path}')
logit = model(transform(im).unsqueeze(0).to(device))[0]
predict = logit.argmax(-1).item()
prob = logit.softmax(-1)[predict].item()
plt.title(f'benign: dog2.png\n{classes[predict]}: {prob:.2%}')
plt.axis('off')
plt.imshow(np.array(im))
plt.tight_layout()
plt.show()
# adversarial image
adv_im = Image.open(f'./fgsm/{path}')
logit = model(transform(adv_im).unsqueeze(0).to(device))[0]
predict = logit.argmax(-1).item()
prob = logit.softmax(-1)[predict].item()
plt.title(f'adversarial: dog2.png\n{classes[predict]}: {prob:.2%}')
plt.axis('off')
plt.imshow(np.array(adv_im))
plt.tight_layout()
plt.show()
Jepg Compression
import imgaug.augmenters as iaa
# pre-process image
x = transforms.ToTensor()(adv_im)*255
x = x.permute(1, 2, 0).numpy()
x = x.astype(np.uint8)
# TODO: use "imgaug" package to perform JPEG compression (compression rate = 70)
compressed_x = iaa.JpegCompression(compression=70)(image=x)
logit = model(transform(compressed_x).unsqueeze(0).to(device))[0]
predict = logit.argmax(-1).item()
prob = logit.softmax(-1)[predict].item()
plt.title(f'JPEG adversarial: dog2.png\n{classes[predict]}: {prob:.2%}')
plt.axis('off')
plt.imshow(compressed_x)
plt.tight_layout()
plt.show()