书生大模型实战营学习[9] OpenCompass 评测 InternLM-1.8B 实践

在这里插入图片描述

准备工作

打开开发机,选择cuda11.7环境,A100选择10%,点击创建,然后进入开发机即可,和之前的操作一样。接下来创建环境,下载必要的依赖包

conda create -n opencompass python=3.10
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
cd ~
conda activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
apt-get update
apt-get install cmake
pip install -r requirements.txt
pip install protobuf

数据的准备:

cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

查看所有跟 InternLM 及 C-Eval 相关的配置:

python tools/list_configs.py internlm ceval

结果:

+----------------------------------------+----------------------------------------------------------------------+
| Model                                  | Config Path                                                          |
|----------------------------------------+----------------------------------------------------------------------|
| hf_internlm2_1_8b                      | configs/models/hf_internlm/hf_internlm2_1_8b.py                      |
| hf_internlm2_20b                       | configs/models/hf_internlm/hf_internlm2_20b.py                       |
| hf_internlm2_7b                        | configs/models/hf_internlm/hf_internlm2_7b.py                        |
| hf_internlm2_base_20b                  | configs/models/hf_internlm/hf_internlm2_base_20b.py                  |
| hf_internlm2_base_7b                   | configs/models/hf_internlm/hf_internlm2_base_7b.py                   |
| hf_internlm2_chat_1_8b                 | configs/models/hf_internlm/hf_internlm2_chat_1_8b.py                 |
| hf_internlm2_chat_1_8b_sft             | configs/models/hf_internlm/hf_internlm2_chat_1_8b_sft.py             |
| hf_internlm2_chat_20b                  | configs/models/hf_internlm/hf_internlm2_chat_20b.py                  |
| hf_internlm2_chat_20b_sft              | configs/models/hf_internlm/hf_internlm2_chat_20b_sft.py              |
| hf_internlm2_chat_20b_with_system      | configs/models/hf_internlm/hf_internlm2_chat_20b_with_system.py      |
| hf_internlm2_chat_7b                   | configs/models/hf_internlm/hf_internlm2_chat_7b.py                   |
| hf_internlm2_chat_7b_sft               | configs/models/hf_internlm/hf_internlm2_chat_7b_sft.py               |
| hf_internlm2_chat_7b_with_system       | configs/models/hf_internlm/hf_internlm2_chat_7b_with_system.py       |
| hf_internlm2_chat_math_20b             | configs/models/hf_internlm/hf_internlm2_chat_math_20b.py             |
| hf_internlm2_chat_math_20b_with_system | configs/models/hf_internlm/hf_internlm2_chat_math_20b_with_system.py |
| hf_internlm2_chat_math_7b              | configs/models/hf_internlm/hf_internlm2_chat_math_7b.py              |
| hf_internlm2_chat_math_7b_with_system  | configs/models/hf_internlm/hf_internlm2_chat_math_7b_with_system.py  |
| hf_internlm_20b                        | configs/models/hf_internlm/hf_internlm_20b.py                        |
| hf_internlm_7b                         | configs/models/hf_internlm/hf_internlm_7b.py                         |
| hf_internlm_chat_20b                   | configs/models/hf_internlm/hf_internlm_chat_20b.py                   |
| hf_internlm_chat_7b                    | configs/models/hf_internlm/hf_internlm_chat_7b.py                    |
| hf_internlm_chat_7b_8k                 | configs/models/hf_internlm/hf_internlm_chat_7b_8k.py                 |
| hf_internlm_chat_7b_v1_1               | configs/models/hf_internlm/hf_internlm_chat_7b_v1_1.py               |
| internlm_7b                            | configs/models/internlm/internlm_7b.py                               |
| ms_internlm_chat_7b_8k                 | configs/models/ms_internlm/ms_internlm_chat_7b_8k.py                 |
+----------------------------------------+----------------------------------------------------------------------+
+--------------------------------+-------------------------------------------------------------------+
| Dataset                        | Config Path                                                       |
|--------------------------------+-------------------------------------------------------------------|
| ceval_clean_ppl                | configs/datasets/ceval/ceval_clean_ppl.py                         |
| ceval_contamination_ppl_810ec6 | configs/datasets/contamination/ceval_contamination_ppl_810ec6.py  |
| ceval_gen                      | configs/datasets/ceval/ceval_gen.py                               |
| ceval_gen_2daf24               | configs/datasets/ceval/ceval_gen_2daf24.py                        |
| ceval_gen_5f30c7               | configs/datasets/ceval/ceval_gen_5f30c7.py                        |
| ceval_ppl                      | configs/datasets/ceval/ceval_ppl.py                               |
| ceval_ppl_1cd8bf               | configs/datasets/ceval/ceval_ppl_1cd8bf.py                        |
| ceval_ppl_578f8d               | configs/datasets/ceval/ceval_ppl_578f8d.py                        |
| ceval_ppl_93e5ce               | configs/datasets/ceval/ceval_ppl_93e5ce.py                        |
| ceval_zero_shot_gen_bd40ef     | configs/datasets/ceval/ceval_zero_shot_gen_bd40ef.py              |
| configuration_internlm         | configs/datasets/cdme/internlm2-chat-7b/configuration_internlm.py |
| modeling_internlm2             | configs/datasets/cdme/internlm2-chat-7b/modeling_internlm2.py     |
| tokenization_internlm          | configs/datasets/cdme/internlm2-chat-7b/tokenization_internlm.py  |
+--------------------------------+-------------------------------------------------------------------+

选择configs/models/hf_internlm/的hf_internlm2_chat_1_8b.py

使用OpenCompass 评测

使用命令行配置参数法进行评测

将下面代码贴到hf_internlm2_chat_1_8b.py中:

from opencompass.models import HuggingFaceCausalLM


models = [
    dict(
        type=HuggingFaceCausalLM,
        abbr='internlm2-1.8b-hf',
        path="/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b",
        tokenizer_path='/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b',
        model_kwargs=dict(
            trust_remote_code=True,
            device_map='auto',
        ),
        tokenizer_kwargs=dict(
            padding_side='left',
            truncation_side='left',
            use_fast=False,
            trust_remote_code=True,
        ),
        max_out_len=100,
        min_out_len=1,
        max_seq_len=2048,
        batch_size=8,
        run_cfg=dict(num_gpus=1, num_procs=1),
    )
]

配置环境变量

#环境变量配置
export MKL_SERVICE_FORCE_INTEL=1

使用命令行评估

python run.py --datasets ceval_gen --models hf_internlm2_chat_1_8b --debug

评估结果

dataset                                         version    metric         mode    internlm2-1.8b-hf
----------------------------------------------  ---------  -------------  ------  -----------------------
ceval-computer_network                          db9ce2     accuracy       gen      47.37                                                                           
ceval-operating_system                          1c2571     accuracy       gen      47.37                                                                                 
ceval-computer_architecture                     a74dad     accuracy       gen      23.81                                                                                 
ceval-college_programming                       4ca32a     accuracy       gen      13.51                                                                                 
ceval-college_physics                           963fa8     accuracy       gen      42.11                                                                                 
ceval-college_chemistry                         e78857     accuracy       gen      33.33                                                                                 
ceval-advanced_mathematics                      ce03e2     accuracy       gen      10.53                                                                                 
...          

在这里插入图片描述

使用配置文件修改参数法进行评测

除了通过命令行配置实验外,OpenCompass 还允许用户在配置文件中编写实验的完整配置,并通过 run.py 直接运行它。配置文件是以 Python 格式组织的,并且必须包括 datasets 和 models 字段。
首先在configs文件夹下创建eval_tutorial_demo.py

cd /root/opencompass/configs
touch eval_tutorial_demo.py

将以下代码粘贴到eval_tutorial_demo.py中:

from mmengine.config import read_base

with read_base():
    from .datasets.ceval.ceval_gen import ceval_datasets
    from .models.hf_internlm.hf_internlm2_chat_1_8b import models as hf_internlm2_chat_1_8b_models

datasets = ceval_datasets
models = hf_internlm2_chat_1_8b_models

测评:

cd /root/opencompass
python run.py configs/eval_tutorial_demo.py --debug

结果:

dataset                                         version    metric         mode    internlm2-1.8b-hf
----------------------------------------------  ---------  -------------  ------  -----------------------
ceval-computer_network                          db9ce2     accuracy       gen      47.37                                                                           
ceval-operating_system                          1c2571     accuracy       gen      47.37                                                                                 
ceval-computer_architecture                     a74dad     accuracy       gen      23.81                                                                                 
ceval-college_programming                       4ca32a     accuracy       gen      13.51                                                                                 
ceval-college_physics                           963fa8     accuracy       gen      42.11                                                                                 
ceval-college_chemistry                         e78857     accuracy       gen      33.33                                                                                 
ceval-advanced_mathematics                      ce03e2     accuracy       gen      10.53                                                                                 
...      

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/883731.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Altium Designer(AD)百度云下载与安装(附安装步骤)

在我们日常使用当中,Altium designer常常也被简称为AD,是一款一体化的电子产品开发系统软件,主要运行在Windows操作系统上。 我们通过Altium designer把原理图设计、电路仿真、PCB绘制编辑、拓扑逻辑自动布线、信号完整性分析和设计输出等技…

Eclipse Memory Analyzer (MAT)提示No java virtual machine was found ...解决办法

1,下载mat后安装,打开时提示 jdk版本低,需要升级到jdk17及以上版本,无奈就下载了jdk17,结果安装后提示没有jre环境,然后手动生成jre目录,命令如下: 进入jdk17目录:执行&…

鸿蒙界面开发(九):列表布局 (List)

列表布局 当列表项达到一定数量,内容超过屏幕大小时,可以自动提供滚动功能。它适合用于呈现同类数据类型或数据类型集,例如图片和文本。在列表中显示数据集合是许多应用程序中的常见要求(如通讯录、音乐列表、购物清单等&#xf…

Uniapp 微信小程序 最新 获取用户头像 和 昵称 方法 有效可用

文章目录 前言代码实现运行效果技术分析 前言 同事有个需求 授权获取用户头像 和 昵称 。之前做过线上小程序发版上线流程 就实现了下 最新的方法和 api 有些变化 记录下 代码实现 先直接上代码 <template><view class"container"><buttonclass&qu…

解决macOS安装redis以后不支持远程链接的问题

参考文档:https://blog.csdn.net/qq_37703224/article/details/142542179?spm1001.2014.3001.5501 安装的时候有个提示, 使用指定配置启动: /opt/homebrew/opt/redis/bin/redis-server /opt/homebrew/etc/redis.conf那么我们可以尝试修改这个配置文件: code /opt/homebrew/…

IDEA服务启动时无法输出日志

起服务时&#xff0c;控制台啥日志也没有 解决方案&#xff1a;选择【启用调试输出】 SQL的日志无法打印 原来安装了一个Mybatis Log Free&#xff0c;用的好好的。 后来换了个项目&#xff0c;SQL执行日志就打印不出来了。 解决方案&#xff1a;换个插件&#xff0c;我换了…

使用离火插件yoloV8数据标注,模型训练

1. 启动 2.相关配置 2.1 data.yaml path: D:/yolo-tool/yaunshen-yolov8/YOLOv8ys/YOLOv8-CUDA10.2/1/datasets/ceshi001 train: images val: images names: [蔡徐坤,篮球] 2.2 cfg.yaml # Ultralytics YOLOv8, GPL-3.0 license # Default training settings and hyp…

VS Code使用Git Bash终端

Git Bash可以运行linux命令&#xff0c;在VS Code的终端界面&#xff0c;找到号旁边的箭头&#xff0c;就能直接切换了 当然&#xff0c;前提是安装了Git Bash&#xff0c;并且在资源管理器里&#xff0c;能鼠标右键出"Git Bash Here"

C语言 | Leetcode C语言题解之第438题找到字符串中所有字母异位词

题目&#xff1a; 题解&#xff1a; /*** Note: The returned array must be malloced, assume caller calls free().*/ /* *int strCmpn&#xff1a;比较滑动窗口和字符串的相同值 char * s&#xff1a;字符串s&#xff0c;滑动窗口的位置 char * p&#xff1a;字符串p&#…

Python 课程21-Django

前言 在当今互联网时代&#xff0c;Web开发已成为一项必备技能。而Python作为一门简洁、高效的编程语言&#xff0c;其Web框架Django以其强大的功能和快速开发的特点&#xff0c;受到了广大开发者的青睐。如果你想深入学习Django&#xff0c;构建自己的Web应用&#xff0c;那么…

云中红队系列 | 使用 AWS API 配置Fireprox进行 IP轮换

在渗透测试评估期间&#xff0c;某些活动需要一定程度的自动化&#xff0c;例如从 LinkedIn 等网站抓取网页以收集可用于社会工程活动、密码喷洒登录门户或测试时盲注的有效员工姓名列表网络应用程序。但是&#xff0c;从单个源 IP 地址执行这些活动可能会导致在测试期间被拦截…

深度学习—神经网络基本概念

一&#xff0c;神经元 1.生物神经元与人工神经元 1.1神经元是人脑的基本结构和功能单位之一。人脑中有数1000亿个神经元&#xff0c;其功能是接受&#xff08;树突&#xff09;&#xff0c;整合&#xff08;细胞体&#xff09;&#xff0c;传导&#xff08;轴突&#xff09;和…

电脑usb接口封禁如何实现?5种禁用USB接口的方法分享!(第一种你GET了吗?)

“防患于未然&#xff0c;安全始于细节。”在信息技术飞速发展的今天&#xff0c;企业的信息安全问题日益凸显。 USB接口作为数据传输的重要通道&#xff0c;在带来便利的同时&#xff0c;也成为了数据泄露和安全风险的高发地。 因此&#xff0c;对电脑USB接口进行封闭管理&a…

【OceanBase 诊断调优】—— GC问题根因分析

GC 流程涉及到 RS 的状态切换和 LS 的资源安全回收&#xff0c;流程上较长。且 GC 线程每个租户仅有一个&#xff0c;某个日志流 GC Hang 死时会卡住所有其余日志流的 GC&#xff0c;进而造成更大的影响。 本文档会帮助大家快速定位到 GC 故障的模块&#xff0c;直达问题核心。…

Redis篇(环境搭建)

目录 一、安装包 1. Windows版下载地址 2. Linux版下载地址 二、安装Redis 1. 在Linux中安装Redis 2. 在Windows中安装Redis 3. 细节问题 三、Redis服务启动 1. 默认启动 2. 指定配置启动 3. 开机自启 四、Redis服务停止 1. Linux系统中启动和停止Redis 2. Window…

SLF4J报错log4j又报错

项目场景&#xff1a; 搭建一个spirngboot项目&#xff0c;启动运行时&#xff0c;SLF4J报错 解决后 ~ log4j又报错了。 问题描述 首先是SLF4J报错了&#xff0c;解决完SL4J报错问题后&#xff0c;再次启动项目&#xff0c;log4j又报错了 。。。 报错信息&#xff1a; SLF4J…

Go语言匿名字段使用与注意事项

1. 定义 Go语言支持一种特殊的字段只需要提供类型而不需要写字段名的字段&#xff0c;称之为匿名字段或者嵌套字段。 所谓匿名字段实际上是一种结构体嵌套的方式&#xff0c;所以也可以称作嵌套字段。 这种方式可以实现组合复用&#xff0c;即通过匿名字段&#xff0c;结构体…

说说海外云手机的自动化功能

在全球社交媒体营销中&#xff0c;通过自动化功能&#xff0c;企业不再需要耗费大量时间和精力手动监控和操作每台设备。这意味着&#xff0c;企业可以显著提升效率、节省成本&#xff0c;同时减少对人力资源的依赖。那么&#xff0c;海外云手机的自动化功能具体能带来哪些优势…

使用ucharts写的小程序页面柱状图上方没有数字

使用uCharts官网 - 秋云uCharts跨平台图表库写的柱状图如何让柱子上放没有数据 更改前 更改后 使用uCharts官网 - 秋云uCharts跨平台图表库 写的小程序图表&#xff0c;无论是柱状图还是折线图添加一个 dataLabel: false, // 不显示数据 九可以实现不显示数据 const opts …

IDEA Dependency Analyzer 分析 maven 项目包的依赖

一、场景分析 javax.validation 是我们 SpringMVC 常用的数据校验框架。但是 javax.validation 是一个规范&#xff08;Java Bean Validation&#xff0c;简称 JSR 380&#xff09;&#xff0c;它并没有具体的实现&#xff0c;它的常用实现&#xff0c;是hibernate-validator。…