VCNet论文阅读笔记

VCNet论文阅读笔记

0、基本信息

信息细节
英文题目VCNet and Functional Targeted Regularization For Learning Causal Effects of Continuous Treatments
翻译VCNet和功能目标正则化用于学习连续处理的因果效应
单位芝加哥大学
年份2021
论文链接[2103.07861] VCNet和功能定向正则化用于学习连续处理的因果效应 (arxiv.org)
代码链接https://github.com/lushleaf/varying-coefficient-net-with-functional-tr
发表会议ICLR 2021 Conference Program Chairs

1、摘要

背景:因果推断(casual inference)在智能营销、药物治疗、决策上有广泛的应用,比如优惠券对用户购买意愿的影响、药品多大程度改善或治愈疾病、某项政策提高多少就业率等。(即,预估一种干预因素(treatment)对结果(outcome)的影响(treatment effect),本文的目标问题就是获得ADRF曲线(平均剂量反应曲线):x轴是药物浓度(treatment),y轴是患者效果(outcome)。

存在问题:

  • 大多数uplift相关的论文都是关于binary treatment的因果效应估计,然而现实生活中,我们却经常遇到连续treatment (continues treatment)的情况。比如电商发放优惠券的满减金额是连续的,医生给病人开药的剂量是连续。那么我们应该如何对continues treatment对情况进行因果效应估计呢?

  • 以前解决连续treatment的方法是将连续treatment分成多个blocks,使用不同的head处理不同的block,但是这样获得的outcome是不连续的(对应下图的Drnet曲线)。

image.png

  • 神经网络处理这个问题大多是,神经网络第一层是 ( t , x ) (t,x) (t,x),最后一层是 y y y,这样做会存在treatment可能会在高维度表征中丢失的问题,以前的处理方法是将 t t t,加到每个隐藏层上,但是这样做让预测更加的不连续。

文章贡献:

  • 提出一个可变系数神经网络VCNet能处理连续干预的网络结构

  • 推广了目标正则化,以获得整个ADRF曲线的双重鲁棒估计。

2、问题陈述和建模

iid 样本 { ( y _ i , x _ i , t _ i ) } _ i = 1 n \{(y\_i,\boldsymbol{x}\_i,t\_i)\}\_{i=1}^n {(y_i,x_i,t_i)}_i=1n,其中X是协变量向量,T是连续treatment[0,1],Y是结果

💎目标就是求平均剂量反应函数:

ψ ( t ) = E ( Y ∣ do ( T = t ) ) \psi(t)=\mathbb{E}(Y\mid\text{do}(T=t)) ψ(t)=E(Ydo(T=t))

这里的 do 操作符表示“干预”或“人为设置”处理变量 𝑇 为 𝑡。这意味着我们要考虑的是,如果我们强制将处理设置为 𝑡,在这种情况下 𝑌的期望值。

患者年龄 X治疗水平 T结果 Y
1300.52
2300.53
3500.54
4800.51

ψ ( 0.5 ) = E ( Y ∣ do ( T = 0.5 ) ) \psi(0.5)=\mathbb{E}(Y\mid\text{do}(T=0.5)) ψ(0.5)=E(Ydo(T=0.5))

但在实际应用中,我们通常不能直接进行干预实验,我们只能观察到变量间的关系。在观察性数据中,我们常常用条件期望来替代这个干预性期望。我们需要将这个理论性的期望转换为可实际计算的形式。

ψ ( t ) = E ( Y ∣ do ( T = t ) ) = E ( E ( Y ∣ X , T = t ) ) \psi(t)=\mathbb{E}(Y\mid\text{do}(T=t))=\mathbb{E}(\mathbb{E}(Y|X,T=t)) ψ(t)=E(Ydo(T=t))=E(E(YX,T=t))

ψ ( 0.5 ) = E ( Y ∣ do ( T = 0.5 ) ) = E ( E ( Y ∣ X , T = 0.5 ) ) \psi(0.5)=\mathbb{E}(Y\mid\text{do}(T=0.5))=\mathbb{E}(\mathbb{E}(Y|X,T=0.5)) ψ(0.5)=E(Ydo(T=0.5))=E(E(YX,T=0.5))

E ( Y ∣ 30 , T = 0.5 ) = ( 2 + 3 ) / 2 = 2.5 \mathbb{E}(Y|30,T=0.5) = (2+3)/2 = 2.5 E(Y∣30,T=0.5)=(2+3)/2=2.5

E ( Y ∣ 50 , T = 0.5 ) = 4 \mathbb{E}(Y|50,T=0.5) =4 E(Y∣50,T=0.5)=4

E ( Y ∣ 80 , T = 0.5 ) = 1 \mathbb{E}(Y|80,T=0.5) =1 E(Y∣80,T=0.5)=1

ψ ( 0.5 ) = E ( E ( Y ∣ X , T = 0.5 ) ) = E ( E ( Y ∣ 30 , T = 0.5 ) + E ( Y ∣ 50 , T = 0.5 ) + E ( Y ∣ 80 , T = 0.5 ) ) \psi(0.5)=\mathbb{E}(\mathbb{E}(Y|X,T=0.5)) = \mathbb{E}(\mathbb{E}(Y|30,T=0.5)+\mathbb{E}(Y|50,T=0.5)+\mathbb{E}(Y|80,T=0.5)) ψ(0.5)=E(E(YX,T=0.5))=E(E(Y∣30,T=0.5)+E(Y∣50,T=0.5)+E(Y∣80,T=0.5))

ψ ( 0.5 ) = \psi(0.5) = ψ(0.5)= ( 2.5 + 4 + 1 ) / 3 = 2.42 (2.5+4+1)/3 = 2.42 (2.5+4+1)/3=2.42

但是这里面存在一个问题:年长的患者可能更容易在同一治疗水平下有不同的结果(X存在混杂因素)。

解决方案:

提出一个广义倾向性得分的概念

E ( E ( Y ∣ X , T = t ) ) \mathbb{E}(\mathbb{E}(Y|X,T=t)) E(E(YX,T=t))需要结合所有与 𝑋 相关的信息来进行计算。然而,当你面对的是复杂的数据,有时通过所有的 𝑋 来进行估计会引入噪声或混杂因素。

使用 π ( t ∣ x ) \pi(t|x) π(tx)代表患者接受treatment的概率( P ( t ∣ x ) P(t|x) P(tx)

倾向评分提供了一种将多维数据(特征 𝑋)映射到一维(治疗概率)的方法。这一映射使得我们能够更有效地建模和学习潜在的因果关系。

ψ ( t ) = E ( Y ∣ do ( T = t ) ) = E ( E ( Y ∣ X , T = t ) ) = E ( E ( Y ∣ π ( t ∣ x ) , T = t ) ) \psi(t)=\mathbb{E}(Y\mid\text{do}(T=t))=\mathbb{E}(\mathbb{E}(Y|X,T=t)) = \mathbb{E}(\mathbb{E}(Y|\pi(t|x),T=t)) ψ(t)=E(Ydo(T=t))=E(E(YX,T=t))=E(E(Yπ(tx),T=t))

π ( 0.5 ∣ 30 ) = 0.4 \pi(0.5|30) = 0.4 π(0.5∣30)=0.4

π ( 0.5 ∣ 50 ) = 0.3 \pi(0.5|50) = 0.3 π(0.5∣50)=0.3

π ( 0.5 ∣ 80 ) = 0.3 \pi(0.5|80) = 0.3 π(0.5∣80)=0.3

ψ ( 0.5 ) = E ( E ( Y ∣ π ( t ∣ x ) , T = t ) ) = ( 2.5 ∗ 0.4 + 4 ∗ 0.3 + 1 ∗ 0.3 ) / 1 = 2.5 \psi(0.5)= \mathbb{E}(\mathbb{E}(Y|\pi(t|x),T=t))=(2.5* 0.4+4* 0.3+1* 0.3)/1 = 2.5 ψ(0.5)=E(E(Yπ(tx),T=t))=(2.50.4+40.3+10.3)/1=2.5

通过这个过程,我们减少了由 𝑋引入的潜在偏倚,使得结果 𝑌 更好地反映了治疗的真实效果。

3、VCNet模型原理

3.1 基本结构

image.png

先使用简单的神经网络估计 π ( t ∣ x ) \pi(t|x) π(tx),之后使用VCNet得到预测结果

3.1 𝜋(𝑡|𝑋)估计

由于本文所提到的treatment是连续的,因此本文将treatment分成了B个grid区间,通过softmax转化成一个多分类问题,再通过差值估计得到最后的估计结果。

π _ g r i d N N ( x ) = s o f t m a x ( w z ) \pi\_{grid}^{NN}(x)=softmax(wz) π_gridNN(x)=softmax(wz)

π N N ( t ∣ x ) = π _ g r i d t _ 1 , N N ( x ) + B ( π _ g r i d t _ 2 , N N ( x ) − π _ g r i d t _ 1 , N N ( x ) ) ( t − t _ 1 ) \\\pi^{NN}(t|x)=\pi\_{grid}^{t\_1,NN}(x)+B(\pi\_{grid}^{t\_2,NN}(x)-\pi\_{grid}^{t\_1,NN}(x))(t-t\_1) πNN(tx)=π_gridt_1,NN(x)+B(π_gridt_2,NN(x)π_gridt_1,NN(x))(tt_1)

image.png

3.2 VCNet变系数估计

那如何得到变系数?VCNet中采用样条估计得到 𝜃(𝑡),样条通过对间断点处的导数进行约束,可以实现间断点处的连续性。

一些简单的数学知识可以参考:码农小哥:一文读懂三次样条、曲线连续

假设 θ _ i ( t ) = ∑ _ l = 1 L a _ i , l ϕ _ l N N ( t ) \theta\_i(t)=\sum\_{l=1}^La\_{i,l}\phi\_l^{NN}(t) θ_i(t)=_l=1La_i,lϕ_lNN(t)KaTeX parse error: Undefined control sequence: \[ at position 11: \theta(t)=\̲[̲\theta\_{1}(t),…, 𝑑𝜃(𝑡) 是 𝜃(𝑡) 的维度。

其中, { ϕ _ l N N ( t ) } _ l = 1 L \left\{\phi\_{l}^{NN}(t)\right\}\_{l=1}^{L} {ϕ_lNN(t)}_l=1L为样条基, 𝑎𝑖,𝑙 为系数。则我们有

image

这里样条基的形式可以任意选择,假设以DRNet的多头形式估计变系数,DRNet其实也是VCNet的一个特例。

image.png

3.3 损失函数

同时优化π和μ

image.png

得到最优解

4、结果

从论文实验效果上看,VCNet对连续treatment的估计效果确实挺好的,同时加上DR也能很好的提升效果。

image

image

参考

  • 连续干预下的深度因果推断 – VCNet解读 - 知乎 (zhihu.com)

  • 因果推断笔记 | 连续型treatment因果效应估计之DRNet&VCNet - 知乎 (zhihu.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/882405.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV_图像旋转超详细讲解

图像转置 transpose(src, dst); transpose()可以实现像素下标的x和y轴坐标进行对调:dst(i,j)src(j,i),接口形式 transpose(InputArray src, // 输入图像OutputArray dst, // 输出 ) 图像翻转 flip(src, dst, 1); flip()函数可以实现对图像的水平翻转…

9.23 C++类中的特殊内容

仿照string类&#xff0c;实现myString //my_string.cpp #include "my_string.h" #include <iostream> #include <cstring>using namespace std;My_string::My_string():size(15){this->ptr new char[size];this->ptr[0] \0; //表示…

Qt_多元素控件

目录 1、认识多元素控件 2、QListWidget 2.1 使用QListWidget 3、QTableWidget 3.1 使用QListWidget 4、QTreeWidget 4.1 使用QTreeWidget 5、QGroupBox 5.1 使用QGroupBox 6、QTabWidget 6.1 使用QTabWidget 结语 前言&#xff1a; 在Qt中&#xff0c;控件之间…

Python办公自动化教程(001):PDF内容提取

1、Pdfplumber介绍 pdfplumber的github地址&#xff1a; https://github.com/jsvine/pdfplumber/【介绍】&#xff1a;pdfplumber 是一个用于处理 PDF 文件的 Python 第三方库&#xff0c;它提供了一种方便的方式来提取 PDF 文件中的文本、表格和其他信息。【功能】&#xff…

CICD从无到会

一 CICD是什么 CI/CD 是指持续集成&#xff08;Continuous Integration&#xff09;和持续部署&#xff08;Continuous Deployment&#xff09;或持续交付&#xff08;Continuous Delivery&#xff09; 1.1 持续集成&#xff08;Continuous Integration&#xff09; 持续集成是…

面向对象 vs 面向过程

Java 和 C 语言的区别&#xff1a;面向对象 vs 面向过程 在编程世界中&#xff0c;不同的编程语言承载着不同的编程范式。C 语言作为一门经典的面向过程编程语言&#xff0c;注重函数的调用和操作&#xff1b;而Java则是典型的面向对象编程语言&#xff0c;重视对象与类的设计…

拯救者Legion R9000X 2021R(82K8)原厂Win10与Windows11系统恢复镜像下载

LENOVO联想拯救者R9000X锐龙版2021款【82K8】预装OEM系统WIN11/10安装包&#xff0c;恢复原装出厂时开箱状态一模一样 链接&#xff1a;https://pan.baidu.com/s/15dGwacsEG0G8pOiZAHyXaQ?pwd0xgk 提取码&#xff1a;0xgk 联想原装出厂系统自带所有驱动、出厂主题壁纸、系统…

华为高级交换技术笔记 2024-2025

2024-2025 一、9/31.通信模型和封装2.以太网3.MAC地址4.以太网帧5.MAC地址表的建立 二、9/61.交换机的数据的处理2.以太网帧的分类3.广播域4.vlan技术开发背景 一、9/3 1.通信模型和封装 2.以太网 3.MAC地址 4.以太网帧 5.MAC地址表的建立 二、9/6 1.交换机的数据的处理 2.以…

Windows 配置docker和ubuntu系统

windos10 配置docke时&#xff0c;无意间发现wsl功能挺好用&#xff0c;而且是和docker 的linux容器连通的。 记录一下解决的几个问题 error during connect: Get http://%2F%2F.%2Fpipe%2Fdocker_engine/v1.40/images/json: open //./pipe/docker_engine: The system cannot …

学习记录:js算法(四十三):翻转二叉树

文章目录 翻转二叉树我的思路网上思路递归栈 总结 翻转二叉树 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点 图一&#xff1a; 图二&#xff1a; 示例 1&#xff1a;&#xff08;如图一&#xff09; 输入&#xff1a;root [4,2,7,1…

密集行人数据集 CrowdHumanvoc和yolo两种格式,yolo可以直接使用train val test已经划分好有yolov8训练200轮模型

密集行人数据集 CrowdHuman voc和yolo两种格式&#xff0c;yolo可以直接使用 train val test已经划分好 有yolov8训练200轮模型。 CrowdHuman 密集行人检测数据集 数据集描述 CrowdHuman数据集是一个专为密集行人检测设计的数据集&#xff0c;旨在解决行人密集场景下的检测挑…

2024个人简历模板免费可编辑,可能是整理最全的简历(支持Word格式下载)

提供各行业简历模板WORD可编辑格式下载&#xff0c;涵盖求职简历模板、大学生简历模板、个人简历模板、留学简历模板、英文简历模板、免费简历模板、工作简历模板、保研简历模板、暑期实习简历、寒假实习简历、校招简历等。 都是word格式&#xff0c;直接下载就能用。 网盘链…

zabbix入门单机部署

zabbix官网 1进入官网后选择右上角Download 选择你要的版本以及需要的组件&#xff0c;网页下方会自动生成需要操作的步骤 &#xff0c;跟着步骤一步一步安装即可&#xff1a; 这里跟着官网步骤一步步走下去就可以了 但是需要注意的是安装 yum install centos-release-scl源…

全面详尽的 PHP 环境搭建教程

目录 目录 PHP 环境搭建概述 在 Windows 上搭建 PHP 环境 使用集成环境 XAMPP 安装步骤 配置和测试 常用配置 手动安装 Apache、PHP 和 MySQL 安装 Apache 安装 PHP 安装 MySQL 配置 PHP 连接 MySQL 在 Linux 上搭建 PHP 环境 使用 LAMP 方案 安装 Apache 安装 …

vcruntime140_1.dll无法继续执行代码的6种解决方法

在计算机编程和软件开发中&#xff0c;我们经常会遇到各种错误和问题。其中&#xff0c;vcruntime140_1.dll无法继续执行代码是一个常见的问题。这个问题可能会导致程序崩溃&#xff0c;影响我们的工作进度。因此&#xff0c;了解这个问题的原因以及如何解决它是非常重要的。 …

Netty笔记10-Netty参数调优

文章目录 一、CONNECT_TIMEOUT_MILLISCONNECT_TIMEOUT_MILLIS设置为1秒超时CONNECT_TIMEOUT_MILLIS设置为5秒超时注意事项 二、SO_BACKLOG代码示例注意事项 三、ulimit -n(文件描述符)设置文件描述符限制在注意事项 四、TCP_NODELAY使用 TCP_NODELAY 的场景注意事项 五、SO_SND…

JavaWeb--纯小白笔记03:servlet入门---动态网页的创建

笔记&#xff1a;index.html在tomcat中为默认的名字&#xff0c;html里面的语法不严谨。改配置文件要小心&#xff0c;不然容易删掉其他 Servlet&#xff1a;服务器端小程序&#xff0c;写动态网页需要用Servlet&#xff0c;普通的java类通过继承HttpServlet&#xff0c;可以响…

【重学 MySQL】三十一、字符串函数

【重学 MySQL】三十一、字符串函数 函数名称用法描述ASCII(S)返回字符串S中的第一个字符的ASCII码值CHAR_LENGTH(s)返回字符串s的字符数&#xff0c;与CHARACTER_LENGTH(s)相同LENGTH(s)返回字符串s的字节数&#xff0c;和字符集有关CONCAT(s1,s2,…,sn)连接s1,s2,…,sn为一个字…

Docker + Win 10 学习记录

下载Docker Release notes | Docker Docs 推荐使用4.33版本&#xff0c;最新的Docker版本在win10 22H2无法安装。需要升级到win11. 查看Win10版本是否与最新版的Docker兼容 运行 win R&#xff0c; 然后输入winver 如果你的Docker版本无法在当前的win10安装&#xff0c;请更…

828华为云征文|华为云Flexus云服务器X实例部署Xnote笔记应用

828华为云征文&#xff5c;华为云Flexus云服务器X实例部署Xnote笔记应用 前言一、Flexus云服务器X实例介绍1.1 Flexus云服务器X实例简介1.2 Flexus云服务器X实例特点1.3 Flexus云服务器X实例使用场景 二、Note Mark 介绍2.1 Xnote简介2.2 Xnote特点2.3 主要使用场景 三、本次实…