光伏板缺陷红外检测数据集

光伏板缺陷红外检测数据集 包含以下4个数据文件: /train:训练集 /valid:验证集 /test:测试集 README.txt:数据说明 【数据说明】检测目标以Pascal VOC格式进行标注,对每个图像进行以下预处理,统一调整大小为640x640。数据集共包含11599+光伏板红外图像样张,其中train包含11400+红外图像样张(带xml标注),valid包含119+红外图像样张(带xml标注),test包含80+红外图像样张(带xml标注),也可以自行划分训练集、验证集和测试集,数据集的增广方法如下: * Rotation: Between -45° and +45° * Brightness: Between -25% and +25% 最后,目标检测对应的缺陷类别包含2大类,分别为热点和局部热斑。

d10f2ee52f824a808b4bbf1e98da90a5.png

光伏板缺陷红外检测数据集

数据集描述

该数据集是一个专门用于光伏板缺陷红外图像检测的数据集,旨在帮助研究人员和开发者训练和评估基于深度学习的目标检测模型。光伏板是太阳能发电系统中的关键组件,其性能直接影响整个系统的效率。通过红外成像技术,可以有效检测光伏板上的热点和局部热斑等缺陷,从而及时发现并处理潜在问题。数据集提供了大量的高分辨率红外图像,并且所有标注都是通过Pascal VOC格式进行的,确保了高质量的标注信息。

数据规模

  • 总样本数量:11,599+张红外图像
    • 训练集 (train):11,400+张红外图像(带xml标注)
    • 验证集 (valid):119+张红外图像(带xml标注)
    • 测试集 (test):80+张红外图像(带xml标注)
  • 数据量:具体大小未提供
  • 标注格式:Pascal VOC格式XML标注
  • 目标类别
    • 热点 (Hot Spot)
    • 局部热斑 (Local Hot Spot)

图像特性

  • 统一预处理:每张图像都经过预处理,统一调整大小为640x640像素。
  • 多样化场景:覆盖了不同类型的光伏板、不同的光照条件以及各种背景环境下的红外图像情况。
  • 高质量手工标注:每张图像都有详细的边界框标注,支持直接用于训练目标检测模型。
  • 真实拍摄:所有图像均为实际拍摄的真实场景,增强了模型在实际应用中的鲁棒性。
  • 数据增广:数据集进行了以下增广方法:
    • 旋转 (Rotation):角度范围为-45°到+45°
    • 亮度 (Brightness):变化范围为-25%到+25%

应用场景

  • 光伏系统维护:通过自动检测光伏板上的热点和局部热斑,辅助运维人员及时发现和处理故障,提高光伏系统的可靠性和发电效率。
  • 智能巡检:集成到无人机或机器人巡检系统中,实现自动化巡检,减少人工成本。
  • 科研分析:用于研究目标检测算法在特定工业应用场景中的表现,特别是在复杂背景和光照条件下的鲁棒性。
  • 故障预警:通过早期检测光伏板上的温度异常,提前预警潜在故障,减少系统停机时间。

数据集结构

典型的数据集目录结构如下:

1solar_panel_defect_infrared_dataset/
2├── train/
3│   ├── images/
4│   │   ├── img_00001.jpg
5│   │   ├── img_00002.jpg
6│   │   └── ...
7│   ├── annotations/
8│   │   ├── img_00001.xml
9│   │   ├── img_00002.xml
10│   │   └── ...
11├── valid/
12│   ├── images/
13│   │   ├── img_00001.jpg
14│   │   ├── img_00002.jpg
15│   │   └── ...
16│   ├── annotations/
17│   │   ├── img_00001.xml
18│   │   ├── img_00002.xml
19│   │   └── ...
20├── test/
21│   ├── images/
22│   │   ├── img_00001.jpg
23│   │   ├── img_00002.jpg
24│   │   └── ...
25│   ├── annotations/
26│   │   ├── img_00001.xml
27│   │   ├── img_00002.xml
28│   │   └── ...
29├── README.txt  # 数据说明文件

数据说明

  • 检测目标:以Pascal VOC格式进行标注。
  • 图像预处理:每张图像都经过预处理,统一调整大小为640x640像素。
  • 数据集内容
    • 训练集 (train):包含11,400+张红外图像样张(带xml标注)。
    • 验证集 (valid):包含119+张红外图像样张(带xml标注)。
    • 测试集 (test):包含80+张红外图像样张(带xml标注)。
  • 目标标签:目标检测对应的缺陷类别包含2大类,分别为热点 (Hot Spot) 和局部热斑 (Local Hot Spot)。
  • 数据增广:数据集进行了以下增广方法:
    • 旋转 (Rotation):角度范围为-45°到+45°
    • 亮度 (Brightness):变化范围为-25%到+25%
  • 自行划分:用户可以根据需要自行划分训练集、验证集和测试集。

示例代码

以下是一个使用Python和相关库(如OpenCV、PIL等)来加载和展示数据集的简单示例代码:

1import os
2import cv2
3import numpy as np
4from PIL import Image
5import xml.etree.ElementTree as ET
6
7# 数据集路径
8dataset_path = 'path/to/solar_panel_defect_infrared_dataset/'
9
10# 加载图像和边界框标注
11def load_image_and_boxes(image_path, annotation_path):
12    # 读取图像
13    image = Image.open(image_path).convert('RGB')
14    
15    # 解析VOC标注文件
16    tree = ET.parse(annotation_path)
17    root = tree.getroot()
18    boxes = []
19    for obj in root.findall('object'):
20        class_name = obj.find('name').text
21        bbox = obj.find('bndbox')
22        xmin = int(bbox.find('xmin').text)
23        ymin = int(bbox.find('ymin').text)
24        xmax = int(bbox.find('xmax').text)
25        ymax = int(bbox.find('ymax').text)
26        boxes.append([class_name, xmin, ymin, xmax, ymax])
27    return image, boxes
28
29# 展示图像和边界框
30def show_image_with_boxes(image, boxes):
31    img = np.array(image)
32    for box in boxes:
33        class_name, xmin, ymin, xmax, ymax = box
34        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
35        label = f'{class_name}'
36        cv2.putText(img, label, (xmin, ymin - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
37    
38    cv2.imshow('Image with Boxes', img)
39    cv2.waitKey(0)
40    cv2.destroyAllWindows()
41
42# 主函数
43if __name__ == "__main__":
44    subset = 'train'  # 可以选择 'train', 'valid', 或 'test'
45    images_dir = os.path.join(dataset_path, subset, 'images')
46    annotations_dir = os.path.join(dataset_path, subset, 'annotations')
47    
48    # 获取图像列表
49    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
50    
51    # 随机选择一张图像
52    selected_image = np.random.choice(image_files)
53    image_path = os.path.join(images_dir, selected_image)
54    annotation_path = os.path.join(annotations_dir, selected_image.replace('.jpg', '.xml'))
55    
56    # 加载图像和边界框
57    image, boxes = load_image_and_boxes(image_path, annotation_path)
58    
59    # 展示带有边界框的图像
60    show_image_with_boxes(image, boxes)

这段代码展示了如何加载图像和其对应的边界框标注文件,并在图像上绘制边界框。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。

示例代码:使用预训练模型进行推理

以下是使用预训练模型进行推理的示例代码。这里我们假设您使用的是基于YOLOv5的模型,但您可以根据需要选择其他支持目标检测的模型。

1import torch
2import cv2
3import numpy as np
4from PIL import Image
5import yolov5  # 请确保已安装yolov5库
6
7# 数据集路径
8dataset_path = 'path/to/solar_panel_defect_infrared_dataset/'
9
10# 加载预训练模型
11model = yolov5.load('path/to/pretrained/yolov5_weights.pt')  # 替换成实际的预训练模型路径
12model.eval()
13
14# 主函数
15if __name__ == "__main__":
16    subset = 'train'  # 可以选择 'train', 'valid', 或 'test'
17    images_dir = os.path.join(dataset_path, subset, 'images')
18    
19    # 获取图像列表
20    image_files = [f for f in os.listdir(images_dir) if f.endswith('.jpg')]
21    
22    # 随机选择一张图像
23    selected_image = np.random.choice(image_files)
24    image_path = os.path.join(images_dir, selected_image)
25    
26    # 读取并预处理图像
27    image = Image.open(image_path).convert('RGB')
28    
29    # 使用预训练模型进行推理
30    results = model(image)
31    
32    # 处理预测结果
33    boxes = results.xyxy[0].cpu().numpy()
34    
35    # 在图像上绘制边界框
36    img = np.array(image)
37    for box in boxes:
38        xmin, ymin, xmax, ymax, conf, class_id = box
39        class_name = results.names[int(class_id)]
40        label = f'{class_name} {conf:.2f}'
41        cv2.rectangle(img, (int(xmin), int(ymin)), (int(xmax), int(ymax)), (0, 255, 0), 2)
42        cv2.putText(img, label, (int(xmin), int(ymin) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
43    
44    # 显示结果
45    cv2.imshow('Image with Boxes', img)
46    cv2.waitKey(0)
47    cv2.destroyAllWindows()

这段代码展示了如何使用预训练的YOLOv5模型进行推理,并显示和保存推理结果。您可以根据实际需求进一步扩展和修改这段代码,以适应您的具体应用场景。如果您需要使用其他模型进行更高级的功能,如模型微调或增量训练,可以参考相应模型的官方文档来进行相应的配置和操作。

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/881633.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Codeforces Round 974 (Div. 3) A-F

封面原图 画师礼島れいあ 下午的ICPC网络赛的难受一晚上全都给我打没了 手速拉满再加上秒杀线段树 这场简直了啊 唯一可惜的是最后还是掉出了1000名 一把上蓝应该没啥希望了吧 A - Robin Helps 题意 侠盗罗宾因劫富济贫而闻名于世 罗宾遇到的 n n n 人,从 1 s …

中泰免签,准备去泰国旅游了吗?《泰语翻译通》app支持文本翻译和语音识别翻译,解放双手对着说话就能翻译。

泰国是很多中国游客的热门选择,现在去泰国旅游更方便了,因为泰国对中国免签了。如果你打算去泰国,那么下载一个好用的泰语翻译软件是很有必要的。 简单好用的翻译工具 《泰语翻译通》App就是为泰国旅游设计的,它翻译准确&#x…

Cisco Catalyst 9000 Series Switches, IOS XE Release 17.15.1 ED

Cisco Catalyst 9000 Series Switches, IOS XE Release 17.15.1 ED 思科 Catalyst 9000 交换产品系列 IOS XE 系统软件 请访问原文链接:https://sysin.org/blog/cisco-catalyst-9000/,查看最新版。原创作品,转载请保留出处。 作者主页&…

uniapp中使用picker-view选择时间

picker-view 是 UniApp 中用于展示和选择数据的组件。它适用于创建多列选择器&#xff0c;类似于 iOS 和 Android 系统中的选择器视图。以下是 picker-view 的详细介绍&#xff0c;包括用法、属性和事件。 一 用法 <template><view><picker-view :value"…

机器学习——Stacking

Stacking&#xff1a; 方法&#xff1a;训练多个模型(可以是强模型)&#xff0c;然后将这些模型的预测结果作为新的特征&#xff0c;输入到下一层新的模型&#xff08;可以是多个&#xff09;中进行训练&#xff0c;从而得到最终的预测结果。 代表&#xff1a;Stacking本身并没…

Java多线程Thread及其原理深度解析

文章目录 1. 实现多线程的方式2. Thread 部分源码2.1. native 方法注册2.2. Thread 中的成员变量2.3. Thread 构造方法与初始化2.4. Thread 线程状态与操作系统状态2.4. start() 与 run() 方法2.5. sleep() 方法2.6. join() 方法2.7. interrupt() 方法 本文参考&#xff1a; 线…

OpenCV_最简单的鼠标截取ROI区域

在OpenCV中也存在鼠标的操作&#xff0c;今天我们先介绍一下鼠标中的操作事件 void setMousecallback(const string& winname, MouseCallback onMouse, void* userdata0) setMousecallback参数说明&#xff1a; winname:窗口的名字 onMouse:鼠标响应函数&#xff0c;回调…

接口加解密及数据加解密

目录 一、 加解密方式介绍 1.1 Hash算法加密 1.2. 对称加密 1.3 非对称加密 二、 我们要讲什么&#xff1f; 三、 接口加解密 四、 数据加解密 一、 加解密方式介绍 所有的加密方式我们可以分为三类&#xff1a;对称加密、非对称加密、Hash算法加密。 算法内部的具体实现…

【后端开发】JavaEE初阶—线程的理解和编程实现

前言&#xff1a; &#x1f31f;&#x1f31f;本期讲解多线程的知识哟~~~&#xff0c;希望能帮到屏幕前的你。 &#x1f308;上期博客在这里&#xff1a;【后端开发】JavaEE初阶——计算机是如何工作的&#xff1f;&#xff1f;&#xff1f;-CSDN博客 &#x1f308;感兴趣的小伙…

【设计模式】UML类图

目录 前言 一、类图概述 二、类图的作用 三、类图表示法 四、类之间关系的表示方法 1. 关联关系 1.1 单向关联 1.2 双向关联 1.3 自关联 2. 聚合关系 3. 组合关系 4. 依赖关系 5. 继承关系 6. 实现关系 总结 前言 统一建模语言&#xff08; Unified Modeling La…

游戏如何对抗定制挂

近年来&#xff0c;游戏安全对抗强度相比以往更加激烈&#xff0c;具体表现在“定制挂”趋势显著。在近期收集的近万款外挂样本中&#xff0c;定制挂约占比78%&#xff0c;常见的内存修改器、变速器等通用作弊手段占比正在下降。 所谓定制挂&#xff0c;是指针对某款游戏单独开…

九章云极DataCanvas公司荣获2024年服贸会“科技创新服务示范案例”

9月15日&#xff0c;2024年中国国际服务贸易交易会&#xff08;服贸会&#xff09;示范案例交流会暨颁奖典礼在北京国家会议中心举行&#xff0c;九章云极DataCanvas 公司自研的DataCanvas Alaya NeW智算操作系统凭借卓越的AI创新实力、前瞻性的市场布局以及突破性的技术革新成…

Python脚本每日自动备份MySQL数据库,无需mysqldump

编写一个Python脚本&#xff0c;每天凌晨3点开始备份 脚本具有以下特点 不需要安装mysql-client&#xff0c;并且Windows Linux都可以使用支持多个数据库连接的备份每个数据库支持多个表备份日志保存下来&#xff0c;方便第二天早上查看备份结果 首先安装需要的库 pip3 ins…

Mybatis Plus分页查询返回total为0问题

Mybatis Plus分页查询返回total为0问题 一日&#xff0c;乌云密布&#xff0c;本人看着mybatis plus的官方文档&#xff0c;随手写了个分页查询&#xff0c;如下 Page<Question> questionPage questionService.page(new Page<>(current, size),questionService.g…

[C语言]连子棋游戏

文章目录 一、前言二、游戏思路三、游戏方法1、初始化2、判断胜利3、交互4、电脑下棋 四、核心方法说明1、初始化游戏2、销毁棋盘3、显示游戏4、电脑下棋5、用户下棋6、判断游戏状态7、游戏交互 五、游戏效果展示与源码分享1、游戏效果2、源代码 一、前言 对于指针和数组理解尚…

DataGrip在Windows和MacOS平台上的快捷键

0. 背景信息 No.说明1测试DataGrip版本号 : 2024.2.2 1. Windows下快捷键 2. MacOS下快捷键

基于波特图的控制系统设计算法

波特图&#xff08;Bode Plot&#xff09;是一种用于描述线性控制系统频率响应的图形表示方法&#xff0c;通常用于分析和设计控制系统。它以控制系统的传递函数&#xff08;或频域传递函数&#xff09;为基础&#xff0c;将系统的幅频特性&#xff08;振幅-频率响应&#xff0…

PyCharm与Anaconda超详细安装配置教程

1、安装Anaconda&#xff08;过程&#xff09;-CSDN博客 2.创建虚拟环境conda create -n pytorch20 python3.9并输入conda activate pytorch20进入 3.更改镜像源conda/pip(只添加三个pip源和conda源即可) 4.安装PyTorch&#xff08;CPU版&#xff09; 5.安装Pycharm并破解&…

LED灯、蜂鸣器、继电器的控制

LED灯的控制 该专栏所有文章都默认使用STM32F103ZET6开发板 目录 LED灯的控制 一、简单的LED灯控制 1、初始化函数 led灯 2、应用函数 2、蜂鸣器 3、继电器 一、简单的LED灯控制 编程框架&#xff1a;初始化函数和应用函数 1、初始化函数 初始化函数一般包括&#xf…

SVTR文字识别

论文地址&#xff1a;https://arxiv.org/abs/2205.00159 notes&#xff1a; 论文2.5中说的N nodes&#xff0c;就是输出的类别数量&#xff0c;英文37&#xff0c;中文6625&#xff0c;英文37说的是最简单的英文文字识别任务&#xff0c;不区分大小写&#xff0c;就是26个字母…