llama网络结构及源码

目录

模型初始化

config

lm_head

transformer

wte

h

rms_1/rms_2

attn

c_attn

c_proj

线性层mlp

ln_f

rope_cache

mask_cache

kv_caches

tokenizer

tokenizer初始化 

 tokennizer.encoder

位置编码和mask

确定最大文本长度

建立rope_cache

建立mask_cache

确定RoPE和mask

模型前向传播

生成词嵌入

隐藏层计算

 确定kv_cache

进入transformer的隐藏层

attention模块计算

RMSNorm前向

计算q,k,v

词嵌入+位置编码

更新kv_cache

计算注意力

再次经过RMSNorn归一化

经过MLP层

​编辑

 RMSNorm归一化

网络输出

生成下一分词的循环过程

temperature

选取前topk

torch.topk(input, num)

torch.where(condition, x, y)

选择当前时刻网络生成的分词

torch.nn.functional.softmax(input, dim)

torch.multinomial(input, num_samples)

将新生成的索引加入到输入文本中

更新input_pos

idx.index_copy(dim, index, source)

第二次循环

更新输入

更新旋转位置编码

更新mask

 更新词嵌入

进入transfomer隐藏层 

对新生成的分词进行RMSNorm

生成新的q,k,v

 更新k,v及kv_cache

 生成当前位置的注意力分数

生成第二次循环的隐藏层输出 


一、模型初始化

代码地址,首先模型初始化,确定模型属性 

class LLaMA(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        assert config.padded_vocab_size is not None
        self.config = config

        self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                ln_f=RMSNorm(config.n_embd),
            )
        )

        self.rope_cache: Optional[RoPECache] = None
        self.mask_cache: Optional[MaskCache] = None
        self.kv_caches: List[KVCache] = []

config

确定模型参数,config使用默认的LLaMAConfig类

class LLaMAConfig:
    block_size: int = 2048
    vocab_size: int = 32000
    padded_vocab_size: Optional[int] = None
    n_layer: int = 32
    n_head: int = 32
    n_embd: int = 4096

    def __post_init__(self):
        if self.padded_vocab_size is None:
            self.padded_vocab_size = find_multiple(self.vocab_size, 64)

    @classmethod
    def from_name(cls, name: str) -> Self:
        return cls(**llama_configs[name])


llama_configs = {
    "7B": dict(n_layer=32, n_head=32, n_embd=4096),
    "13B": dict(n_layer=40, n_head=40, n_embd=5120),
    "30B": dict(n_layer=60, n_head=52, n_embd=6656),
    "65B": dict(n_layer=80, n_head=64, n_embd=8192),
}

对于所有类型的网络,不变的超参数为:
block_size: 模型处理的最大文本块的大小为2048
vocab_size: 词汇表的大小,即模型能识别的词汇总数为32000

padded_vocab_size经过find_multiple函数确定,用于确保词汇表大小是指定数值(64)的倍数
vocab_size=32000/64=500,词汇表大小是指定数值(64)的倍数
padded_vocab_size32000

def find_multiple(n: int, k: int) -> int:
    if n % k == 0:
        return n
    return n + k - (n % k)

根据网络的参数量不同,模型层数、维度和自主意力头数不同:选择7B模型的情况下,
n_layer: 模型的层数。32
n_head: 自注意力机制中的头数。32
n_embd: 词嵌入的维度或隐藏层的维度。4096

lm_head

线性层输入维度为4096输出维度为32000,没有偏置

self.lm_head = nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)

transformer

nn.ModuleDict():和python字典一样存在键值对,可根据key选取网络

包括有嵌入层wte,隐藏层h和归一化层ln_f

self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
                h=nn.ModuleList(Block(config) for _ in range(config.n_layer)),
                ln_f=RMSNorm(config.n_embd),
            )
        )

 

wte

嵌入层生成词向量,输入维度为填充后词典的大小padded_vocab_size(32000),输出维度为词嵌入维度n_embd(4096)

h

nn.ModuleList():可以通过迭代的方式创建网络,和list的用法一致
n_layer(32)层网络块Block
其中网络块Block,包括前后两层归一化层RMSNorm,一层自主意力层CausalSelfAttention和一层线性层MLP

class Block(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        self.rms_1 = RMSNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.rms_2 = RMSNorm(config.n_embd)
        self.mlp = MLP(config)
rms_1/rms_2

RMSNorm  详解三种常用标准化 Batch Norm & Layer Norm & RMSNorm_layernorm rmsnorm-CSDN博客
Llama改进之——均方根层归一化RMSNorm-CSDN博客

BatchNorm是对一个 batch 单个特征的所有样本做归一化
LayerNorm是对单个样本的所有特征做归一化

class RMSNorm(nn.Module):
    """Root Mean Square Layer Normalization.

    Derived from https://github.com/bzhangGo/rmsnorm/blob/master/rmsnorm_torch.py. BSD 3-Clause License:
    https://github.com/bzhangGo/rmsnorm/blob/master/LICENSE.
    """

    def __init__(self, size: int, dim: int = -1, eps: float = 1e-5) -> None:
        super().__init__()
        self.scale = nn.Parameter(torch.ones(size))
        self.eps = eps
        self.dim = dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE: the original RMSNorm paper implementation is not equivalent
        # norm_x = x.norm(2, dim=self.dim, keepdim=True)
        # rms_x = norm_x * d_x ** (-1. / 2)
        # x_normed = x / (rms_x + self.eps)
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        return self.scale * x_normed
attn

CausalSelfAttention
首先声明嵌入层/隐藏层可以被注意力头数整除
包括c_attn层、c_proj层
注意力头数n_head(32),隐藏层维度n_embd(4096) ,最大文本块的大小block_size(2048)

c_attn

Q,K,V对应的线性层,输入维度为隐藏层维度n_embd(4096),输出维度为3倍的隐藏层维度n_embd(4096)*3分别对应Q,K,V,没有偏置

c_proj

当前模块Block的输出映射,输入维度为隐藏层维度n_embd(4096),输出维度为隐藏层维度n_embd(4096),没有偏置

线性层mlp

hidden_dim(4*4096=16384) ,n_hidden(int(2 * hidden_dim / 3)=10922)
判断是否能被256整除,对n_hidden进行修正,(n + k - (n % k))结果为11008
两个全连接层输入维度为4096,输出维度为11008
映射层输入维度为11008,输出维度为4096

class MLP(nn.Module):
    def __init__(self, config: LLaMAConfig) -> None:
        super().__init__()
        hidden_dim = 4 * config.n_embd
        n_hidden = int(2 * hidden_dim / 3)
        n_hidden = find_multiple(n_hidden, 256)

        self.c_fc1 = nn.Linear(config.n_embd, n_hidden, bias=False)
        self.c_fc2 = nn.Linear(config.n_embd, n_hidden, bias=False)
        self.c_proj = nn.Linear(n_hidden, config.n_embd, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
        x = self.c_proj(x)
        return x

ln_f

RMSNorm,归一化维度为n_embd(4096)

rope_cache

存储或缓存与RoPE(旋转位置编码)相关的数据。Optional[RoPECache] 表示它可以是 RoPECache 类型的对象,也可以是 None

self.rope_cache: Optional[RoPECache] = None

mask_cache

用于缓存与掩码相关的数据。Optional[MaskCache] 表示它可以是 MaskCache 类型的对象,也可以是 None

self.mask_cache: Optional[MaskCache] = None

kv_caches

 用于存储多个 KVCache 类型的缓存对象,初始化为空列表

self.kv_caches: List[KVCache] = []

二、tokenizer

tokenizer初始化 

class Tokenizer:
    """Tokenizer for LLaMA."""

    def __init__(self, model_path: Path) -> None:
        self.processor = SentencePieceProcessor(model_file=str(model_path))
        self.bos_id = self.processor.bos_id()
        self.eos_id = self.processor.eos_id()
        self.pad_id = self.processor.pad_id()

 tokennizer.encoder

tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device)
    def encode(
        self,
        string: str,
        bos: bool = True,
        eos: bool = False,
        max_length: int = -1,
        pad: bool = False,
        device: Optional[torch.device] = None
    ) -> torch.Tensor:
        tokens = self.processor.encode(string)
        if bos:
            tokens = [self.bos_id] + tokens
        if eos:
            tokens = tokens + [self.eos_id]
        if max_length > 0:
            tokens = tokens[:max_length]
        if pad and len(tokens) < max_length:
            tokens += [self.pad_id] * (max_length - len(tokens))

        return torch.tensor(tokens, dtype=torch.int, device=device)

三、位置编码和mask

logits = model(x, max_seq_length, input_pos)

 输入参数包括输入文本对应词库的idx,最大序列长度,现在输入文本的位置

 def forward(
        self, idx: torch.Tensor, max_seq_length: Optional[int] = None, input_pos: Optional[torch.Tensor] = None
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[KVCache]]]:
        B, T = idx.size()

        block_size = self.config.block_size
        if max_seq_length is None:
            max_seq_length = block_size
        assert T <= max_seq_length, f"Cannot forward sequence of length {T}, max seq length is only {max_seq_length}"
        assert max_seq_length <= block_size, f"Cannot attend to {max_seq_length}, block size is only {block_size}"
        assert T <= block_size, f"Cannot forward sequence of length {T}, block size is only {block_size}"

        if self.rope_cache is None:
            self.rope_cache = self.build_rope_cache(idx)
        if self.mask_cache is None:
            self.mask_cache = self.build_mask_cache(idx)

        if input_pos is not None:
            rope = self.rope_cache.index_select(0, input_pos)
            mask = self.mask_cache.index_select(2, input_pos)
            mask = mask[:, :, :, :max_seq_length]
        else:
            rope = self.rope_cache[:T]
            mask = self.mask_cache[:, :, :T, :T]

        # forward the model itself
        x = self.transformer.wte(idx)  # token embeddings of shape (b, t, n_embd)

        if input_pos is None:  # proxy for use_cache=False
            for block in self.transformer.h:
                x, _ = block(x, rope, mask, max_seq_length)
        else:
            if not self.kv_caches:
                head_size = self.config.n_embd // self.config.n_head
                cache_shape = (B, self.config.n_head, max_seq_length, head_size)
                self.kv_caches = [
                    (torch.zeros(cache_shape, device=x.device, dtype=x.dtype), torch.zeros(cache_shape, device=x.device, dtype=x.dtype))
                    for _ in range(self.config.n_layer)
                ]
            for i, block in enumerate(self.transformer.h):
                x, self.kv_caches[i] = block(x, rope, mask, max_seq_length, input_pos, self.kv_caches[i])

        x = self.transformer.ln_f(x)

        logits = self.lm_head(x)  # (b, t, vocab_size)

        return logits

确定最大文本长度

将输入文本长度,本次文本的最大文本长度,模型能够处理的最长文本块大小进行对比,确定本次的最大文本长度

建立rope_cache

建立位置缓存

def build_rope_cache(
    seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
) -> RoPECache:
    """Enhanced Transformer with Rotary Position Embedding.

    Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
    transformers/rope/__init__.py. MIT License:
    https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
    """
    # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
    theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=dtype, device=device) / n_elem))

    # Create position indexes `[0, 1, ..., seq_len - 1]`
    seq_idx = torch.arange(seq_len, dtype=dtype, device=device)

    # Calculate the product of position index and $\theta_i$
    idx_theta = torch.outer(seq_idx, theta).float()

    cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)

    # this is to mimic the behaviour of complex32, else we will get different results
    if dtype in (torch.float16, torch.bfloat16, torch.int8):
        cache = cache.half()
    return cache

输入的参数:模型能够处理的最大文本块大小,embeddiing维度/注意力头数

步骤:
1.计算$\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$

2.计算$\theta_i$和最大文本块各个位置的乘积


3.计算sin(idx_theta)和cos(idx_theta)

建立mask_cache

    def build_mask_cache(self, idx: torch.Tensor) -> MaskCache:
        ones = torch.ones((self.config.block_size, self.config.block_size), device=idx.device, dtype=torch.bool)
        return torch.tril(ones).unsqueeze(0).unsqueeze(0)

步骤:
1.建立最大文本块大小*最大文本块大小的全1(True,布尔型)矩阵
2.取对角线,在增加0,1维度,mask的size为(1,1,模型处理的最大文本块大小,模型处理的最大文本块大小)

确定RoPE和mask

根据输入文本位置确定旋转位置编码和mask

 if input_pos is not None:
            rope = self.rope_cache.index_select(0, input_pos)
            mask = self.mask_cache.index_select(2, input_pos)
            mask = mask[:, :, :, :max_seq_length]
        else:
            rope = self.rope_cache[:T]
            mask = self.mask_cache[:, :, :T, :T]

根据输入文本位置确定旋转位置编码

根据输入文本位置和本次的最大文本长度确定mask,size为(1,1,输入文本长度,本次输入的最大文本长度)

四、模型前向传播

生成词嵌入

 x = self.transformer.wte(idx)

embedding层生成词嵌入

隐藏层计算

 if input_pos is None:  # proxy for use_cache=False
            for block in self.transformer.h:
                x, _ = block(x, rope, mask, max_seq_length)
        else:
            if not self.kv_caches:
                head_size = self.config.n_embd // self.config.n_head
                cache_shape = (B, self.config.n_head, max_seq_length, head_size)
                self.kv_caches = [
                    (torch.zeros(cache_shape, device=x.device, dtype=x.dtype), torch.zeros(cache_shape, device=x.device, dtype=x.dtype))
                    for _ in range(self.config.n_layer)
                ]
            for i, block in enumerate(self.transformer.h):
                x, self.kv_caches[i] = block(x, rope, mask, max_seq_length, input_pos, self.kv_caches[i])

 确定kv_cache

步骤:
1.确定注意力头的维度
embedding维度/注意力头数

2.k,v的维度为(batch_size,注意力头数,本次的最大文本长度,各注意力头的维度)
3.对n_layer(32)层自注意力层,生成全0的k,v

进入transformer的隐藏层

for i, block in enumerate(self.transformer.h):
    x, self.kv_caches[i] = block(x, rope, mask, max_seq_length, input_pos, self.kv_caches[i])

每一层循环的输入包括:
词嵌入,位置嵌入,mask,本次的最大文本长度,输入位置,本次循环对应的kv_cache

    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        mask: MaskCache,
        max_seq_length: int,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache]]:
        h, new_kv_cache = self.attn(self.rms_1(x), rope, mask, max_seq_length, input_pos, kv_cache)
        x = x + h
        x = x + self.mlp(self.rms_2(x))
        return x, new_kv_cache
attention模块计算

更新kv_cache,计算自注意力

 输入包括:
归一化层,位置编码,mask,本次的最大文本长度,输入位置,kv_cache

RMSNorm前向
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE: the original RMSNorm paper implementation is not equivalent
        # norm_x = x.norm(2, dim=self.dim, keepdim=True)
        # rms_x = norm_x * d_x ** (-1. / 2)
        # x_normed = x / (rms_x + self.eps)
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        return self.scale * x_normed
计算q,k,v
    def forward(
        self,
        x: torch.Tensor,
        rope: RoPECache,
        mask: MaskCache,
        max_seq_length: int,
        input_pos: Optional[torch.Tensor] = None,
        kv_cache: Optional[KVCache] = None,
    ) -> Tuple[torch.Tensor, Optional[KVCache]]:
        B, T, C = x.size()  # batch size, sequence length, embedding dimensionality (n_embd)

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        q, k, v = self.c_attn(x).split(self.n_embd, dim=2)

        head_size = C // self.n_head
        k = k.view(B, T, self.n_head, head_size)
        q = q.view(B, T, self.n_head, head_size)
        v = v.view(B, T, self.n_head, head_size)

        q = apply_rope(q, rope)
        k = apply_rope(k, rope)

        k = k.transpose(1, 2)  # (B, nh, T, hs)
        q = q.transpose(1, 2)  # (B, nh, T, hs)
        v = v.transpose(1, 2)  # (B, nh, T, hs)

        if kv_cache is not None:
            cache_k, cache_v = kv_cache
            # check if reached token limit
            if input_pos[-1] >= max_seq_length:
                input_pos = torch.tensor(max_seq_length - 1, device=input_pos.device)
                # shift 1 position to the left
                cache_k = torch.roll(cache_k, -1, dims=2)
                cache_v = torch.roll(cache_v, -1, dims=2)
            k = cache_k.index_copy(2, input_pos, k)
            v = cache_v.index_copy(2, input_pos, v)
            kv_cache = k, v

        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        #  att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        #  att = att.masked_fill(mask[:,:,:T,:T] == 0, float('-inf'))
        #  att = F.softmax(att, dim=-1)
        #  y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)

        # efficient attention using Flash Attention CUDA kernels
        y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

        y = y.transpose(1, 2).contiguous().view(B, T, C)  # re-assemble all head outputs side by side

        # output projection
        y = self.c_proj(y)

        return y, kv_cache

经过线性层生成q,k,v,并分配到不同的注意力头
q,k,v的size均为(B,输入文本长度,注意力头数,各注意力头的维度)

词嵌入+位置编码

针对q,k,将词嵌入和位置编码结合到一起
q = apply_rope(q, rope)
k = apply_rope(k, rope)
两个步骤一样,只看一个步骤就行

def apply_rope(x: torch.Tensor, rope_cache: RoPECache) -> torch.Tensor:
    # truncate to support variable sizes
    T = x.size(1)
    rope_cache = rope_cache[:T]

    # cast because the reference does
    xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
    rope_cache = rope_cache.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
    x_out2 = torch.stack(
        [
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
        ],
        -1,
    )

    x_out2 = x_out2.flatten(3)
    return x_out2.type_as(x)

输入:词嵌入,位置编码
词嵌入维度:(B,输入文本长度,注意力头数,各注意力头的维度)

位置编码维度:(输入文本长度,theta长度,sin/cos)

词嵌入和位置编码分别review
词嵌入:(B,输入文本长度,注意力头数,各注意力头的维度)-->
(B,输入文本长度,注意力头数,各注意力头的维度/2(theta长度),2(sin/cos))

位置编码:(输入文本长度,theta长度,sin/cos)-->
(1(不是batch_size,单单强制为1),输入文本长度,1(强制为1),各注意力头的维度/2(theta长度),2(sin/cos))

提取正弦和余弦
xshaped[..., 0]xshaped[..., 1] 分别表示 xshaped 中正弦和余弦的值。
rope_cache[..., 0]rope_cache[..., 1] 同样表示 rope_cache 中的正弦和余弦值。

计算旋转通过旋转公式实现了在 xshaped 的每个元素上应用 rope_cache 中存储的旋转信息。
实部 = xshaped[...,0] ∗ ropecache[...,0] − xshaped[...,1] ∗ ropecache[...,1]
虚部 = xshaped[...,1] ∗ ropecache[...,0] + xshaped[...,0] ∗ ropecache[...,1]

Stack 操作最终的 torch.stack 操作将计算得到的实部和虚部按最后一个维度(-1)组合成一个新的张量。这样,输出张量 x_out2 的大小将是 (B,输入文本长度,注意力头数,各注意力头的维度/2(theta长度),2(sin/cos))

xshaped = x.float().reshape(*x.shape[:-1], -1, 2)
rope_cache = rope_cache.view(1, xshaped.size(1), 1, xshaped.size(3), 2)
x_out2 = torch.stack(
        [
            xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
            xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
        ],
        -1,)

最后,将x_out2 resize为(B,输入文本长度,注意力头数,各注意力头的维度),和输入向量x的形状一致

更新kv_cache
k = k.transpose(1, 2)  # (B, nh, T, hs)
q = q.transpose(1, 2)  # (B, nh, T, hs)
v = v.transpose(1, 2)  # (B, nh, T, hs)

if kv_cache is not None:
    cache_k, cache_v = kv_cache
    # check if reached token limit
    if input_pos[-1] >= max_seq_length:
        input_pos = torch.tensor(max_seq_length - 1, device=input_pos.device)
        # shift 1 position to the left
        cache_k = torch.roll(cache_k, -1, dims=2)
        cache_v = torch.roll(cache_v, -1, dims=2)
    k = cache_k.index_copy(2, input_pos, k)
    v = cache_v.index_copy(2, input_pos, v)
    kv_cache = k, v

1.将k,v resize为和kv_cache相匹配的形状(B,注意力头数,输入文本长度,各注意力头的维度)

2.将 k或v 的值放入 cache_k 中 input_pos 指定的索引位置,更新kv_cache (B,注意力头数,本次的最大文本长度,各注意力头的维度)

计算注意力

y = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0)

# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
#  att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
#  att = att.masked_fill(mask[:,:,:T,:T] == 0, float('-inf'))
#  att = F.softmax(att, dim=-1)
#  y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)

计算缩放点积注意力(Scaled Dot-Product Attention),利用了高效的 Flash Attention CUDA 内核以加速计算

q的size为(B,注意力头数,输入文本长度,各注意力头的维度)
k,v的size为(B,注意力头数,本次的最大文本长度,各注意力头的维度)
mask的size为(1,1,输入文本长度,本次输入的最大文本长度)

y = y.transpose(1, 2).contiguous().view(B, T, C)

转换维度,将各注意力头的维度连接到一起后,输出维度为(B,输入文本长度,embedding维度)

经过线性层维度不变,返回本次循环Block的自注意力计算结果y和kv_cache

y = self.c_proj(y)
return y, kv_cache

残差连接
x = x + h
x = x + self.mlp(self.rms_2(x))

x是进入隐藏层之前的向量,即由文本对应索引经过embedding后的词嵌入
h是经过隐藏层计算注意力分数后,由x更新的隐藏层输出

由词嵌入和隐藏层输出残差连接后,再和反馈层进行残差连接

经过MLP层

经过RMSNorn归一化,作为MLP层的输入

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE: the original RMSNorm paper implementation is not equivalent
        # norm_x = x.norm(2, dim=self.dim, keepdim=True)
        # rms_x = norm_x * d_x ** (-1. / 2)
        # x_normed = x / (rms_x + self.eps)
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        return self.scale * x_normed

输出zise为 (B,输入文本长度,embedding维度)

x = F.silu(self.c_fc1(x)) * self.c_fc2(x)

分为F.silu(self.c_fc1(x))和self.c_fc2(x)两个部分相乘

维度大小的选取查看前面模型初始化的mlp

激活函数ReLU和SiLU的区别-CSDN博客
激活函数 Relu,Gelu,Mish,SiLU,Swish,Tanh,Sigmoid_gelu和silu-CSDN博客
大模型基础|激活函数|从ReLU 到SwiGLU
torch.nn.functional.silu — PyTorch 2.4 documentation

\text{SiLU}(x) = x \cdot \sigma(x),其中\sigma(x) = \frac{1}{1 + e^{-x}}

*: 这里的乘法是元素级的,即逐元素相乘。这意味着 F.silu(self.c_fc1(x)) 和 self.c_fc2(x) 的每个对应元素相乘,产生一个新的张量。 

最后经过线性层后将11008维,还原为4096维(embedding维度)

本次循环的transfomer Block结束,进入下一次循环

 RMSNorm归一化

x = self.transformer.ln_f(x)

经过32层transfomer Block后,再经过RMSNorm层进行归一化

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # NOTE: the original RMSNorm paper implementation is not equivalent
        # norm_x = x.norm(2, dim=self.dim, keepdim=True)
        # rms_x = norm_x * d_x ** (-1. / 2)
        # x_normed = x / (rms_x + self.eps)
        norm_x = torch.mean(x * x, dim=self.dim, keepdim=True)
        x_normed = x * torch.rsqrt(norm_x + self.eps)
        return self.scale * x_normed

网络输出

logits = self.lm_head(x)

输出维度为词库的大小,将输出的logits经过归一化计算选择词库中各个词的概率

五、生成下一分词的循环过程

temperature

温度越低,结果的差距越大,会使概率分布更加尖锐,从而使得模型更倾向于选择最高概率的类别。

选取前topk

        if top_k is not None:
            v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
            logits = torch.where(logits < v[[-1]], -float("Inf"), logits)

torch.topk(input, num)

返回input中指定的前num个值和对应的索引

torch.where(condition, x, y)

根据条件张量选择输出。对于每个位置,condition 为 True 时取 x,为 False 时取 y
v[[-1]] 选择 v 中的最后一个值,这个值是第 k 大的值。使用双重方括号是为了保持 v[[-1]] 的维度与 logits 相匹配。

选择当前时刻网络生成的分词

probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)

torch.nn.functional.softmax(input, dim)

对 input 张量的指定维度 dim 应用 softmax 操作 
logits 转化为一个概率分布,每个值在 [0, 1] 之间,总和为 1。这样,模型的输出可以解释为各类别的预测概率

torch.multinomial(input, num_samples)

这个函数从 input 张量中根据给定的概率分布进行随机采样。
input: 在这里是 probs,是一个概率分布张量,通常表示每个类别的预测概率。
num_samples: 设定要从概率分布中采样的数量。num_samples=1 表示只需要采样一个类别

将新生成的索引加入到输入文本中

input_pos = input_pos[-1:] + 1

if idx.device.type == "xla":
    xm.mark_step()

# concatenate the new generation
idx = idx.index_copy(0, input_pos, idx_next)
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
    return idx[:input_pos]  # include the EOS token

更新input_pos

idx.index_copy(dim, index, source)

dim: 这个参数指定了要更新的维度。在这里,dim=0 表示更新张量的第一维。
index: 这是一个包含索引的张量,指示 source 张量的值应该被复制到 idx 张量的哪些位置。source: 这是一个包含要插入值的张量。在这里是 idx_next,它是一个表示新值的张量

第二次循环

更新输入

根据更新的input_pos更新输入

更新旋转位置编码

rope_cache已经保存了可处理最大数据块大小对应的各个位置的旋转位置编码
根据位置直接选取,对应位置的旋转位置编码即可

更新mask

mask_cache已经保存各个位置对应的mask
根据位置直接选取对应的mask,然后根据本次的最大文本长度对mask进行截取即可

 更新词嵌入

根据文本对应索引经过embedding,生成新分词对应的词嵌入

进入transfomer隐藏层 

对新生成的分词进行RMSNorm

生成新的q,k,v

size均为(B,注意力头数,文本长度,各注意力头的维度)

 更新k,v及kv_cache

size:(B,注意力头数,本次的最大文本长度,各注意力头的维度)

 生成当前位置的注意力分数

生成第二次循环的隐藏层输出 

残差连接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/878652.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

信奥初赛解析:1.1-计算机概述

目录 前言 知识要点 一、发展史 二、计算机的分类 三、计算机的基本特征 四、计算机的应用 课堂练习 题目列表 定项选择题 不定项选择题 参考答案 定项选择题 不定项选择题 前言 从今天开始&#xff0c;我们要重点讲初赛内容&#xff0c; 预计讲半年&#xff0c;信…

Linux下编译Kratos

本文记录在Linux下编译Kratos的流程。 零、环境 操作系统Ubuntu 22.04.4 LTSVS Code1.92.1Git2.34.1GCC11.4.0CMake3.22.1Boost1.74.0oneAPI2024.2.1 一、依赖与代码 1.1 安装依赖 apt-get update apt-get install vim openssh-server openssh-client ssh \build-essential …

Oracle发邮件功能:设置的步骤与注意事项?

Oracle发邮件配置教程&#xff1f;如何实现Oracle发邮件功能&#xff1f; Oracle数据库作为企业级应用的核心&#xff0c;提供了内置的发邮件功能&#xff0c;使得数据库管理员和开发人员能够通过数据库直接发送邮件。AokSend将详细介绍如何设置Oracle发邮件功能。 Oracle发邮…

电气自动化入门01:电工基础

视频链接&#xff1a;1.1 电工知识&#xff1a;电工基础_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1PJ41117PW?p2&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 1.电能和电力系统 2.电工常用物理量及其应用 2.1电阻&#xff1a; 2.2电流&#xff1a; 2.3电压&…

面试官问:请描述一次你成功解决问题的经历?

面试官为什么要这么问&#xff1f; 面试官问你描述一次成功解决问题的经历&#xff0c;主要是为了评估你的几个关键方面&#xff1a; 问题解决能力&#xff1a;了解你在面对挑战时的思维方式和应对策略。 决策能力&#xff1a;考察你在压力下做出明智决定的能力。 沟通技巧&am…

Python 全栈系列271 微服务踩坑记

说明 这个坑花了10个小时才爬出来 碰到一个现象&#xff1a;将微服务改造为并发后&#xff0c;请求最初很快&#xff0c;然后就出现大量的失败&#xff0c;然后过一会又能用。 过去从来没有碰到这个问题&#xff0c;要么是一些比较明显的资源&#xff0c;或者逻辑bug&#xff0…

使用Python生成多种不同类型的Excel图表

目录 一、使用工具 二、生成Excel图表的基本步骤 三、使用Python创建Excel图表 柱形图饼图折线图条形图散点图面积图组合图瀑布图树形图箱线图旭日图漏斗图直方图不使用工作表数据生成图表 四、总结 Excel图表是数据可视化的重要工具&#xff0c;它通过直观的方式将数字信…

CesiumJS+SuperMap3D.js混用实现可视域分析 S3M图层加载 裁剪区域绘制

版本简介&#xff1a; cesium&#xff1a;1.99&#xff1b;Supermap3D&#xff1a;SuperMap iClient JavaScript 11i(2023)&#xff1b; 官方下载文档链家&#xff1a;SuperMap技术资源中心|为您提供全面的在线技术服务 示例参考&#xff1a;support.supermap.com.cn:8090/w…

嵌入式鸿蒙系统开发语言与开发方法分析

大家好,今天主要给大家分享一下,HarmonyOS系统的主力开发语言ArkTS语言开发方法,它是基于TypeScript(简称TS)语言扩展而来。 第一:ArkTS语言基本特性 目的:声明式UI,让开发者以更简洁,更自然的方式开发高性能应用。 声明式 UI基本特性: 基本UI描述:ArkTS定义了各种装饰…

Docker-compose:管理多个容器

Docker-Compose 是 Docker 公司推出的一个开源工具软件&#xff0c;可以管理多个 Docker 容器组成一个应用。用户需要定义一个 YAML 格式的配置文件 docker-compose.yml&#xff0c;写好多个容器之间的调用关系。然后&#xff0c;只要一个命令&#xff0c;就能同时启动/关闭这些…

Jenkins部署若依项目

一、配置环境 机器 jenkins机器 用途&#xff1a;自动化部署前端后端&#xff0c;前后端自动化构建需要配置发送SSH的秘钥和公钥&#xff0c;同时jenkins要有nodejs工具来进行前端打包&#xff0c;maven工具进行后端的打包。 gitlab机器 用途&#xff1a;远程代码仓库拉取和…

HTML5超酷炫的水果蔬菜在线商城网站源码系列模板1

文章目录 1.设计来源1.1 主界面1.2 商品列表界面1.3 商品详情界面1.4 其他界面 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/142059238 HTML5超酷炫的水果蔬菜在线商城网…

动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习

动手学习RAG: 向量模型动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习动手学习RAG&#xff1a;迟交互模型colbert微调实践 bge-m3 1. 环境准备 pip install transformers pip install open-retrievals注意安装时是pip install open-retrievals&#xff0c;但调用时只…

【Mac】系统环境配置

常用工具 Navicat PJ版本&#xff1a;this Host切换器 SwitchHosts termius 一款好用的Linux服务器连接工具&#xff1a; termius 小飞机 dddd&#xff1a;&#x1fa9c; Git mac安装git有好多种方式&#xff0c;自带的xcode或者通过Homebrew来安装&#xff0c;本文的…

人工智能开发实战matplotlib库应用基础

内容导读 matplotlib简介绘制直方图绘制撒点图 一、matplotlib简介 matplotlib是一个Python 2D绘图库&#xff0c;它以多种硬拷贝格式和跨平台的交互式环境生成高质量的图形。 matplotlib 尝试使容易的事情变得更容易&#xff0c;使困难的事情变得可能。 我们只需几行代码…

Qt ORM模块使用说明

附源码&#xff1a;QxOrm是一个C库资源-CSDN文库 使用说明 把QyOrm文件夹拷贝到自己的工程项目下, 在自己项目里的Pro文件里添加include($$PWD/QyOrm/QyOrm.pri)就能使用了 示例test_qyorm.h写了表的定义,Test_QyOrm_Main.cpp中写了所有支持的功能的例子: 通过自动表单添加…

C++ ——string的模拟实现

目录 前言 浅记 1. reserve&#xff08;扩容&#xff09; 2. push_back&#xff08;尾插&#xff09; 3. iterator&#xff08;迭代器&#xff09; 4. append&#xff08;尾插一个字符串&#xff09; 5. insert 5.1 按pos位插入一个字符 5.2 按pos位插入一个字符串 …

CleanClip for Mac 剪切板 粘贴工具 历史记录 安装(保姆级教程,新手小白轻松上手)

CleanClip&#xff1a;革新macOS剪贴板管理体验 目录 功能概览 多格式历史记录保存智能搜索功能快速复制操作拖拽功能 安装指南 前期准备安装步骤 配置与使用 功能概览 多格式历史记录保存 CleanClip支持保存文本、图片、文件等多种格式的复制历史记录&#xff0c;为用户提…

C语言 | Leetcode C语言接雨水II

题目&#xff1a; 题解&#xff1a; typedef struct{int row;int column;int height; } Element;struct Pri_Queue; typedef struct Pri_Queue *P_Pri_Queue; typedef Element Datatype;struct Pri_Queue{int n;Datatype *pri_qu; };/*优先队列插入*/ P_Pri_Queue add_pri_que…

通信工程学习:什么是SNI业务节点接口

SNI&#xff1a;业务节点接口 SNI业务节点接口&#xff0c;全称Service Node Interface&#xff0c;是接入网&#xff08;AN&#xff09;和一个业务节点&#xff08;SN&#xff09;之间的接口&#xff0c;位于接入网的业务侧。这一接口在通信网络中扮演着重要的角色&#xff0c…