七夕特辑(一)浪漫表白方式 用神经网络生成一首情诗

目录

  • 一、准备工作
  • 二、用神经网络生成一首诗,代码说明

在这里插入图片描述

牛郎织女相会,七夕祝福要送来。祝福天下有情人,终成眷属永相伴。
七夕是中国传统的情人节,也是恋人们表达爱意的好时机。在这个特别的日子里,送上温馨的祝福,愿你们的爱情甜蜜如蜜,幸福美满。
爱情是生命中最美好的事物之一,而七夕则是庆祝爱情的日子。无论你们是刚刚开始恋爱,还是已经在一起多年,都应该珍惜彼此的陪伴,相互关爱,共同成长。
在这个充满浪漫和温馨气氛的日子里,我祝愿每一对恋人都能拥有幸福的未来。愿你们的爱情之路坦荡顺畅,无论遇到什么困难,都能携手同行,共同度过。
愿你们的爱情像牛郎织女一样坚定,无论距离有多远,都能心心相印,相互感应。愿你们的爱情像流星一样闪耀,划破夜空,留下永恒的印记。愿你们的爱情像玫瑰一样美丽,绽放出绚烂的色彩,散发出迷人的芳香。
在这个特别的日子里,让我们一起祝福天下有情人,愿你们的爱情甜蜜如蜜,幸福美满。愿你们的未来充满阳光和快乐,每一天都是一个美好的情人节。

今天就介绍一种浪漫表白方式,用神经网络生成一首情诗

一、准备工作

  1. 准备数据集
    要生成一首情诗,首先需要一个包含大量情诗的文本数据集。可以从互联网上下载情诗集,或者自己创建一个。数据集应包括每首情诗的标题和正文。将数据集分为训练集和测试集。
  2. 数据预处理
    对数据集进行预处理。将所有文本转换为小写,去除标点符号,并将每个单词转换为索引。需要为训练集和测试集执行相同的预处理操作。
  3. 构建神经网络模型
    选择一个合适的神经网络模型,例如循环神经网络(RNN)或长短时记忆网络(LSTM)。根据项目需求和计算资源,可以构建一个简单的模型,也可以尝试使用更复杂的模型。
  4. 训练模型
    使用训练集训练模型。调整模型的超参数,如学习率、批次大小和迭代次数,以获得最佳性能。在训练过程中,可以使用验证集来监控模型的性能。
  5. 评估模型
    使用测试集评估模型的性能。计算模型的损失和准确率,并检查其生成情诗的质量。如果模型表现不佳,可以尝试调整超参数或使用更复杂的模型。
  6. 生成情诗
    使用训练好的模型生成一首情诗。首先,将用户输入的文字转换为索引,然后使用模型预测下一个词的索引。重复这个过程,直到生成一首满足长度要求的情诗。
  7. 完善情诗
    生成的情诗可能不够完美,可以对其进行后处理,如检查语法、拼写错误并进行修正。此外,还可以使用自然语言生成(NLG)技术,如基于 GPT-3 的模型,来改进生成的情诗。

为了获得更详细的教程和代码示例,请参阅以下资源:

  • Neural Networks and Deep Learning:TensorFlow 官方教程,涵盖了生成式模型和深度学习。
  • seq2seq 模型:一个基于 SeqGAN 的翻译和文本生成项目的教程和代码。
  • 使用 GPT-3 进行自然语言生成:一个使用 GPT-3 进行自然语言生成的示例和代码。
    希望这些资源能帮助您实现项目目标。如果您需要更具体的帮助,请随时提问。

二、用神经网络生成一首诗,代码说明

要使用神经网络生成一首情诗,首先需要准备一个包含大量情诗的文本数据集,然后训练一个神经网络模型。这里我们使用 Python 和 Keras 库来实现这个过程。

  1. 首先,安装所需库:
pip install numpy keras  
  1. 准备数据集。这里我们使用一个简单的情诗数据集,你可以根据需要替换成其他数据集。数据集格式如下:
poems = [  
   "亲爱的,你是我的阳光,我的心跳为你起伏。",  
   "相知相爱,共度春秋,你是我的唯一。",  
   "在这浪漫的夜晚,月光洒满大地,我想你了。",  
   #...  
]
  1. 对数据集进行预处理。将所有文本转换为小写,去除标点符号,并将每个单词转换为索引。
import string
def preprocess_text(text):  
   text = text.lower()  
   text = text.translate(str.maketrans('', '', string.punctuation))  
   words = text.split()  
   return words
words = [preprocess_text(poem) for poem in poems]  
  1. 构建神经网络模型。这里我们使用一个简单的循环神经网络(RNN)模型。
from keras.models import Sequential  
from keras.layers import Embedding, SimpleRNN, Dense
def create_model():  
   model = Sequential()  
   model.add(Embedding(len(words), 128, input_length=len(words[0])))  
   model.add(SimpleRNN(128))  
   model.add(Dense(len(words), activation='softmax'))  
   model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])  
   return model
model = create_model()  
  1. 训练模型。我们需要为模型提供输入数据(X)和输出数据(y)。在这里,我们将每个情诗单词作为一个输入,将该情诗的索引作为输出。
X = [[index] for index, word in enumerate(words)]  
y = [words.index(word) for word in words]
model.fit(X, y, epochs=100, batch_size=32)  
  1. 使用训练好的模型生成一首情诗。首先,将用户输入的文字转换为索引,然后使用模型预测下一个词的索引。
def generate_poem(prompt, model, top_n=10):  
   input_data = [prompt]  
   input_data = [[index] for index, word in enumerate(input_data)]  
   input_data = np.array(input_data, dtype=np.int32)
   predictions = model.predict(input_data, verbose=0)  
   next_word_index = np.argmax(predictions)
   generated_poem = [next_word_index]  
   for _ in range(top_n):  
       input_data.append(next_word_index)  
       input_data = [[index] for index, word in enumerate(input_data)]  
       input_data = np.array(input_data, dtype=np.int32)  
       predictions = model.predict(input_data, verbose=0)  
       next_word_index = np.argmax(predictions)  
       generated_poem.append(next_word_index)
   return [words[index] for index in generated_poem]
user_input = "亲爱的,"  
generated_poem = generate_poem(user_input, model)  
print("生成的情诗:", " ".join(generated_poem))  

以上代码将使用神经网络模型生成一首包含给定用户输入的情诗。请注意,这个示例仅作为参考,实际应用时可能需要根据具体需求进行调整。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/87649.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

STM32电源名词解释

STM32电源架构 常用名词 VCC Ccircuit 表示电路,即接入电路的电压。 VDD Ddevice 表示器件, 即器件内部的工作电压。 VSS Sseries 表示公共连接,通常指电路公共接地端电压。 VDDA Aanalog 表示模拟,是模拟电路部分的电源。主要为…

Java“牵手”天猫商品列表数据,关键词搜索天猫商品数据接口,天猫API申请指南

天猫商城是一个网上购物平台,售卖各类商品,包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取天猫商品列表和商品详情页面数据,您可以通过开放平台的接口或者直接访问天猫商城的网页来获取商品详情信息。以下是两种常用方法的介绍&…

21. 合并两个有序链表(简单系列)

将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2: 输入:l1 [], l2 [] 输出:[] 示例 3: …

jstat(JVM Statistics Monitoring Tool):虚拟机统计信息监视工具

jstat(JVM Statistics Monitoring Tool):虚拟机统计信息监视工具 用于监视虚拟机各种运行状态信息的命令行工具。 它可以显示本地或者远程虚拟机进程中的类加载、内存、垃圾收集、即时编译等运行时数据,在没有GUI图形界面、只提…

C语言暑假刷题冲刺篇——day4

目录 一、选择题 二、编程题 🎈个人主页:库库的里昂 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏✨收录专栏:C语言每日一练 ✨其他专栏:代码小游戏C语言初阶🤝希望作者的文章能对你…

MySQL MVCC的详解之Read View

文章目录 概要一、基于UNDO LOG的版本链1.1、行记录结构1.2、了解UNDO LOG1.3、版本链 二、Read View2.1、判定机制 三、参考 概要 在上文中,我们提到了MVCC(Multi-Version Concurrency Control)多版本并发控制,是通过undo log来实现的。那具…

如何在 Opera 中启用DNS over HTTPS

DNS over HTTPS(基于HTTPS的DNS)是一种更安全的浏览方式,但大多数 Web 浏览器默认情况下不启用它。了解如何在 Opera 浏览器中启用该功能。 您可能不知道这一点,但您的网络浏览器并不像您希望的那样私密或安全。您会看到&#xff…

Python Opencv实践 - 图像直方图均衡化

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像直方图计算 #cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate) #images&…

数据结构(6)

2-3查找树 2-结点:含有一个键(及其对应的值)和两条链,左链接指向2-3树中的键都小于该结点,右链接指向的2-3树中的键都大于该结点。 3-结点:含有两个键(及其对应的值)和三条链,左链接指向的2-3树中的键都小于该结点&a…

FPGA原理与结构——FIFO IP核原理学习

一、FIFO概述 1、FIFO的定义 FIFO是英文First-In-First-Out的缩写,是一种先入先出的数据缓冲器,与一般的存储器的区别在于没有地址线, 使用起来简单,缺点是只能顺序读写数据,其数据地址由内部读写指针自动加1完成&…

vscode 无法跳转第三方安装包

vscode 无法跳转第三方安装包 场景:使用vscode写代码时, 第三方的安装包无法使用ctrl 左键,点击进入查看, 不方便源码查看 解决办法: 使用快捷键 Ctrl Shift P, 进入命令搜索框搜索 setting.json 编辑…

【数据结构】实现栈和队列

目录 一、栈1.栈的概念及结构(1)栈的概念(2)栈的结构 2.栈的实现(1)类型和函数的声明(2)初始化栈(3)销毁(4)入栈(5&#x…

高忆管理:药店零售概念回落,开开实业走低,此前7日大涨超80%

药店零售概念18日盘中大幅下挫,到发稿,华人健康跌逾11%,漱玉布衣、塞力医疗跌超9%,重药控股、浙江震元、榜首医药等跌超7%,药易购跌超6%,开开实业跌超3%。 值得注意的是,开开实业此前7个交易日斩…

【应用层】网络基础 -- HTTP协议

再谈协议HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP的方法HTTP的状态码HTTP常见HeaderHTTP周边会话保持 再谈协议 协议是一种 “约定”. socket api的接口,在读写数据时,都是按 “字符串” 的方式来发送接收的(tcp是以字节流的方式发送的&am…

vue项目配置git提交规范

vue项目配置git提交规范 一、背景介绍二、husky、lint-staged、commitlint/cli1.husky2.lint-staged3.commitlint/cli 三、具体使用1.安装依赖2.运行初始化脚本3.在package.json中配置lint-staged4.根目录新增 commitlint.config.js 4.提交测试1.提示信息格式错误时2.eslint校验…

sql递归查询

一、postgresql 递归sql with recursive p as(select t1.* from t_org_test t1 where t1.id2union allselect t2.*from t_org_test t2 join p on t2.parent_idp.id) select id,name,parent_id from p; sql中with xxxx as () 是对一个查询子句做别名,同时数据库会对…

c++ day2

#include <iostream>using namespace std; /*void row(int &p,int &q)//引用 {int t;tp;pq;qt; }*/ /*struct ab {string name;// int &age; }; void add(int a,int b) {cout << ab<< endl; } void add(float a,float b) {cout << ab <…

四、pikachu之文件包含

文章目录 1、文件包含漏洞概述1.1 文件包含漏洞1.2 相关函数1.3 文件包含漏洞分类 2、File Inclusion(local)3、File Inclusion(remote) 1、文件包含漏洞概述 1.1 文件包含漏洞 文件包含漏洞&#xff1a;在web后台开发中&#xff0c;程序员往往为了提高效率以及让代码看起来更…

C语言编写图形界面 | 移动小球示例

文章目录 其他文章最终结果设计过程定义小球的属性窗口过程函数绘制小球空格回弹小球碰壁 完整代码 其他文章 部分知识可以查看如下文章&#xff1a; C语言编写注册窗口 最终结果 先放一下本篇文章最终结果展示图吧&#xff0c;如图&#xff0c;一个绿色的小球&#xff0c;在…

centos7安装JDK

1.将JDK压缩包复制到/opt/software路径下 2.解压JDK到/opt/module目录下 [rootkb135 software]# tar -zxvf jdk-8u381-linux-x64.tar.gz -C /opt/module 3.配置环境变量 修改profile文件 vim /etc/profile 添加环境变量 #JAVA_HOME export JAVA_HOME/opt/module/jdk1.8.0_…