9.9日记录

1.常见排序算法的复杂度

1.快速排序

1.1快速排序为什么快

从名称上就能看出,快速排序在效率方面应该具有一定的优势。尽管快速排序的平均时间复杂度与“归并排序”和“堆排序”相同,但通常快速排序的效率更高,主要有以下原因。

  • 出现最差情况的概率很低:虽然快速排序的最差时间复杂度为 O(N的平方) ,没有归并排序稳定,但在绝大多数情况下,快速排序能在 O(nlog⁡N) 的时间复杂度下运行。
  • 缓存使用效率高:在执行哨兵划分操作时,系统可将整个子数组加载到缓存,因此访问元素的效率较高。而像“堆排序”这类算法需要跳跃式访问元素,从而缺乏这一特性。
  • 复杂度的常数系数小:在上述三种算法中,快速排序的比较、赋值、交换等操作的总数量最少。这与“插入排序”比“冒泡排序”更快的原因类似。

 1.2基准数优化

快速排序在某些输入下的时间效率可能降低。举一个极端例子,假设输入数组是完全倒序的,由于我们选择最左端元素作为基准数,那么在哨兵划分完成后,基准数被交换至数组最右端,导致左子数组长度为n-1,右子数组长度为0, 如此递归下去,每轮哨兵划分后都有一个子数组的长度为0,分治策略失效,快速排序退化为“冒泡排序”的近似形式。

为了尽量避免这种情况发生,我们可以优化哨兵划分中的基准数的选取策略。例如,我们可以随机选取一个元素作为基准数。然而,如果运气不佳,每次都选到不理想的基准数,效率仍然不尽如人意。

需要注意的是,编程语言通常生成的是“伪随机数”。如果我们针对伪随机数序列构建一个特定的测试样例,那么快速排序的效率仍然可能劣化。

为了进一步改进,我们可以在数组中选取三个候选元素(通常为数组的首、尾、中点元素),并将这三个候选元素的中位数作为基准数。这样一来,基准数“既不太小也不太大”的概率将大幅提升。当然,我们还可以选取更多候选元素,以进一步提高算法的稳健性。采用这种方法后,时间复杂度劣化至O(N)方  的概率大大降低。

2.冒泡排序

3.选择排序

void selectNum(vector<int>& nums) {//选择排序时间复杂度O(N)的平方 空间复杂度01
	int n = nums.size();

	for (int i = 0; i < n-1; i++) {
		int k = i;//用k记录未排序区间的最小元素
		for (int j = i + 1; j < n; j++) {
			if (nums[j] < nums[k]) {
				k = j;
			}
		}
		swap(nums[i],nums[k]);
	}
}

4.插入排序

void insertSort(vector<int>& nums) {
	//外循环
	for (int i = 1; i < nums.size(); i++) {
		//内循环 
		int base = nums[i];
		int j = i - 1;
		while (j>=0&&nums[j]  > base) {
			nums[j + 1] = nums[j];
			j--;
		}
		nums[j + 1] = base;
	}
}

5.归并排序:

void merge(vector<int>& nums, int num1[], int left, int right,int mid){//合并

	int l_pos = left;//左半区
	int r_pos = mid + 1;//右半区

	int pos = left;//临时存储的数组

	while(l_pos<=mid&&r_pos<=right) {
		if (nums[l_pos] < nums[r_pos]) {
			num1[pos++] = nums[l_pos++];
		}
		else {
			num1[pos++] = nums[r_pos++];
		}
	}
	//合并剩余的左半区
	while (l_pos <= mid) {
		num1[pos++] = nums[l_pos++];
	}
	//合并剩余的右半区
	while (r_pos <=right) {
		num1[pos++] = nums[r_pos++];
	}
	while (left <= right) {//最后 将临时数组中的元素拷贝到目标数组中
		nums[left] = num1[left];
		left++;
	}
}
void msort(vector<int>& nums,int num1[],int left,int right) {//分治
	if (left < right) {
		int mid = (left + right) / 2;
		msort(nums,num1,left,mid);
		msort(nums, num1, mid + 1, right);
		merge(nums,num1,left,right,mid);
	}
}
void merge_sort(vector<int> &nums) {//入口函数
	int* num1 = (int*)malloc(nums.size()*sizeof(int));
	if (num1) {
		msort(nums,num1,0,nums.size()-1);
		free(num1);
	}
}

2.leetCode.58最后一个单词的长度

给你一个字符串 s,由若干单词组成,单词前后用一些空格字符隔开。返回字符串中 最后一个 单词的长度。单词 是指仅由字母组成、不包含任何空格字符的最大子字符串。

双指针yyds,一个指针指向最后一个字符串的最后一个字符,另一个指针指向第一个,相减即可。 

class Solution {
public:
    int lengthOfLastWord(string s) {
      int i=s.size()-1;
      while(s[i]==' '){
         i--;
      }
      int j=i-1;
      while(j>=0&&s[j]!=' '){
         j--;
      }
      return i-j;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/874613.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

推荐一款开源、高效、灵活的Redis桌面管理工具:Tiny RDM!支持调试与分析功能!

1、引言 在大数据和云计算快速发展的今天&#xff0c;Redis作为一款高性能的内存键值存储系统&#xff0c;在数据缓存、实时计算、消息队列等领域发挥着重要作用。然而&#xff0c;随着Redis集群规模的扩大和复杂度的增加&#xff0c;如何高效地管理和运维Redis数据库成为了许…

操作系统 --- 线程(Threads)概念 多线程模型 线程控制与组织

零、学习路线 一、线程的引入&#xff0c;什么是线程&#xff0c;为什么要引入线程&#xff1f; 如果说&#xff0c;在OS中引入进程的目的是为了使多个程序能并发执行&#xff0c;以提高资源利用率和系统吞吐量&#xff0c;那么&#xff0c;在操作系统中再引入线程&#xff0c…

Request Response

1 前言 1.1 内容概要 理解Request、Response和HTTP报文之间的关系掌握通过Request能够获得的信息 请求URL、URI、请求协议请求头、客户机和主机请求参数 掌握通过Response能够完成的设置 响应中文乱码问题响应&#xff08;Json&#xff09;字符串、图片&#xff08;文件&a…

C#使用MQTT(一):MQTT服务端

MQTT&#xff08;Message Queuing Telemetry Transport&#xff09; 即时通讯协议&#xff0c; 开发商 IBM MQTT(消息队列遥测传输)是ISO 标准(ISO/IEC PRF 20922)下基于发布/订阅范式的消息协议。它工作在 TCP/IP协议族上&#xff0c;是为硬件性能低下的远程设备以及网络状…

串口接收不到数据之电阻虚焊bug分析思路

单片机和EC移远通信模块进行通信&#xff0c;相同的代码运行在相同的硬件上&#xff0c;但是一个能联网&#xff0c;一个因为没有EC的应答连不上网。 开始分析&#xff0c;排除软件问题&#xff0c;给EC模块发为什么没应答&#xff1f; 1.发送失败 2.接收失败 排除情况2&#x…

005:VTK世界坐标系中的相机和物体

VTK医学图像处理---世界坐标系中的相机和物体 左侧是成像结果 右侧是世界坐标系中的相机与被观察物体 目录 VTK医学图像处理---世界坐标系中的相机和物体 简介 1 在三维空间中添加坐标系 2 世界坐标系中的相机 3 世界…

使用AMD CPU实例部署通义千问Qwen-Audio-Chat

介绍 Qwen-Audio是阿里云研发的大规模音频语言模型&#xff08;Large Audio Language Model&#xff09;。Qwen-Audio可以以多种音频&#xff08;包括说话人语音、自然音、音乐、歌声&#xff09;和文本作为输入&#xff0c;并以文本作为输出。在Qwen-Audio的基础上&#xff0…

校篮球联赛系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;公告管理&#xff0c;基础数据管理&#xff0c;球队管理&#xff0c;球员管理&#xff0c;赛事信息管理&#xff0c;用户管理&#xff0c;轮播图信息 微信端账号功能包括&#…

十四、MySQL高级— 分库分表(7)

&#x1f33b;&#x1f33b; 目录 一、分库1.1 修改配置 schema.xml1.2 如何选择分库表1.3 SQLyog 连接 mycat 二、水平分表2.1 schema.xml2.2 rule.xml2.3 跨库join2.3.1 ER表2.3.2 全局表 2.4 全局序列2.4.1 本地文件2.4.2 数据库方式(一般都用这个)2.4.3 时间戳方式2.4.4 自…

【springboot过ingress后无法获取X-Forwarded-For头信息】

springboot过ingress后无法获取X-Forwarded-For头信息 一、现象结论修改步骤ingressspringboot 排查流程本文参考 一、现象 项目使用spring boot 2.7.18&#xff0c;有个新需求是校验X-Forwarded-For头的所有来源ip合法性&#xff0c;线上环境出现取不到X-Forwarded-For头的问…

什么是期权对冲?

今天期权懂带你了解什么是期权对冲&#xff1f;期权对冲的选择取决于投资者的市场预期和风险承受能力&#xff0c;通过合理使用期权对冲策略&#xff0c;可以有效减少风险并优化投资组合的表现。 期权对冲是什么&#xff1f; 期权是一种支持双向交易的投资产品&#xff0c;期…

Python中的上下文管理器:提升代码的优雅与安全

在编写Python程序时&#xff0c;处理资源&#xff08;如文件、网络连接、数据库会话等&#xff09;的正确打开和关闭至关重要。不当的资源管理可能导致内存泄漏、数据损坏等问题。幸运的是&#xff0c;Python提供了一种优雅的方式来解决这个问题——上下文管理器。本文将探讨上…

【AWDP】 AWDP 赛制详解应对方法赛题实践 量大管饱

文章首发于【先知社区】&#xff1a;https://xz.aliyun.com/t/15535 一、AWDP概述 AWDP是什么 AWDP是一种综合考核参赛团队攻击、防御技术能力、即时策略的攻防兼备比赛模式。每个参赛队互为攻击方和防守方&#xff0c;充分体现比赛的实战性、实时性和对抗性&#xff0c;对参…

HCIE证书泛滥,曾经的“顶流”现在怎么了?

曾经&#xff0c;拿下HCIE/CCIE简直就是网络工程师的最高梦想&#xff0c;走到哪儿都能成为职场宠儿。 不仅薪资高&#xff0c;还意味着你在技术圈子里有了一张“通行证”。 现如今&#xff0c;放眼望去&#xff0c;感觉招聘市场都是HCIE持证者&#xff0c;仿佛这证书已经成了标…

ABB机械手备份与恢复

ABB机械手备份与恢复 备份恢复系统 备份 ABB机器人数据备份的对象是所有正在系统内存中运行的RAPID程序和系统参数。当机器人系统出现错乱或者重新安装系统以后&#xff0c;可以通过备份快速地把机器人恢复到备份时的状态。 如果导出到U盘需要将U盘插入USB接口&#xff0c;位置…

计算机网络(四) —— 简单Tcp网络程序

目录 一&#xff0c;服务器初始化 1.0 部分文件代码 1.1 关于Tcp协议 1.2 创建和绑定套接字 1.3 监听 二&#xff0c;服务器启动 2.1 获取连接 2.2 提供服务 2.3 客户端启动源文件 Main.cc 二&#xff0c;客户端编写 2.1 关于Tcp客户端 2.2 客户端代码 2.3 效果…

新书宣传:《量子安全:信息保护新纪元》

《量子安全&#xff1a;信息保护新纪元》 前言本书的看点本书的目录结语 前言 你好&#xff01; 这是我第一次发布类广告的博文&#xff0c;目的也很单纯&#xff0c;希望以作者的身份介绍一下自己出版的图书——《量子安全&#xff1a;信息保护新纪元》。此书于2024年7月出版…

数学建模笔记—— 回归分析

数学建模笔记—— 回归分析 回归分析1. 回归分析的一般步骤2. 一元线性回归分析2.1 具体过程2.1.1 确定回归方程中的解释变量和被解释变量2.1.2 确定回归模型和建立回归方程2.1.3 利用回归直线进行估计和预测2.1.4 对回归方程进行各种检验(补充)1. 回归直线的拟合优度2. 显著性…

Windows下Python和PyCharm的应用(二)__快捷键方式的设定

前言 程序写久了&#xff0c;难免会形成自己的编程习惯。比如对某一套快捷键的使用&#xff0c;已经形成了肌肉记忆。 为了方便快捷键的使用&#xff0c;可以在PyCharm中设置自己喜欢的快捷键。 我比较习惯于微软Visual Studio的快捷键设置。&#xff08;因为早些年VC开发用的…

8.Bug流程管理,禅道的使用(包含笔试/面试题)

一、bug的生命周期&#xff08;重点&#xff09; bug的生命周期就是从bug被发现到bug被关闭的整个过程。 1.bug生命周期&#xff1a; 新建&#xff08;提交bug&#xff09; - 指派 - 已解决 - 待验 - 关闭 new&#xff08;新建&#xff09; - assign额的&…