【自动驾驶】控制算法(七)离散规划轨迹的误差计算

写在前面:
🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝
个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。

🔍 本文系 清流君 原创之作,荣幸在CSDN首发🐒
若您觉得内容有价值,还请评论告知一声,以便更多人受益。
转载请注明出处,尊重原创,从我做起。

👍 点赞、评论、收藏,三连走一波,让我们一起养成好习惯😜
在这里,您将收获的不只是技术干货,还有思维的火花

📚 系列专栏:【运动控制】系列,带您深入浅出,领略控制之美。🖊
愿我的分享能为您带来启迪,如有不足,敬请指正,让我们共同学习,交流进步!

🎭 人生如戏,我们并非能选择舞台和剧本,但我们可以选择如何演绎 🌟
感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行~~~


文章目录

  • 引言
  • 一、误差计算概述
    • 1、连续轨迹的横向误差
    • 2、连续曲线的投影问题
    • 3、离散轨迹点的误差
  • 二、离散轨迹规划误差计算步骤
    • 1、匹配点
    • 2、投影点
    • 3、横向误差
    • 4、纵向误差
    • 5、投影点的航向角
    • 6、四个式子
  • 三、总结


引言

  本篇博客是 自动驾驶控制算法 系列的第七节。内容整理自 B站知名up主 忠厚老实的老王 的视频,作为博主的学习笔记,分享给大家共同学习。

  本节博客讲解离散轨迹的误差计算,是理论部分中的最后一节,如果看完了前七节,可以自己尝试搭建横向控制模型,因为横向控制所需要的知识和理论,以及存在的障碍,都讲明白了,大家可以自己尝试搭建相关理论模型,编写代码。


一、误差计算概述

  在前面六节讲到了最优的横向控制:
u = − k e r r + δ f u=-ke_{rr}+\delta _f u=kerr+δf其中, k {k} k l q r ( A , B , Q , R ) \mathrm{lqr}(A,B,Q,R) lqr(A,B,Q,R) d l q r ( A ˉ , B ˉ , Q , R ) {{\mathrm{dlqr}(\bar{A},\bar{B},Q,R)}} dlqr(Aˉ,Bˉ,Q,R)的解。

关于这些量的计算:

  • A 、 B A、B AB 的计算在第三节和第四节
  • k k k 的计算在第五节
  • δ f \delta_f δf 的计算在第六节

还剩误差 e r r e_{rr} err 的计算。

1、连续轨迹的横向误差

  在第四节讲过相关误差的计算,先把图画一下:
在这里插入图片描述

   在第四节讲到了 e d e_d ed
e d = ( x ⃗ − x ⃗ r ) ⋅ n ⃗ r e ˙ d = ∣ v ⃗ ∣ sin ⁡ ( θ − θ r ) e φ = φ − θ r e ˙ φ = φ ˙ − κ s ˙ \begin{aligned} e_d&=\left( \vec{x}-\vec{x}_r \right) \cdot \vec{n}_r\\ \dot{e}_d&=|\vec{v}|\sin \left( \theta -\theta _r \right)\\ e_{\varphi}&=\varphi -\theta _r\\ \dot{e}_{\varphi}&=\dot{\varphi}-\kappa \dot{s}\\ \end{aligned} ede˙deφe˙φ=(x x r)n r=v sin(θθr)=φθr=φ˙κs˙其中, θ ˙ r = κ s ˙ \dot{\theta}_r=\kappa \dot{s} θ˙r=κs˙ 由曲率定义式推导出来。

计算误差需要 x ⃗ r \vec{x}_r x r n ⃗ r \vec{n}_r n r 这种投影点的相关信息:

  • x ⃗ r = ( x r , y r ) \vec{x}_r=(x_r,y_r) x r=(xr,yr) 为投影点的直角坐标
  • θ r \theta _r θr为投影点的速度 s ˙ \dot s s˙ 与 x 轴的夹角
  • κ \kappa κ 为投影点的曲率
  • s ˙ \dot{s} s˙ 为投影点的速度
    s ˙ = ∣ v ⃗ ∣ cos ⁡ ( θ − θ r ) 1 − κ e d \dot{s}=\frac{|\vec{v}|\cos \left( \theta -\theta _r \right)}{1-\kappa e_d} s˙=1κedv cos(θθr)

而剩下的这几个自变量:

  • x ⃗ \vec{x} x 为车的位置
  • v ⃗ \vec v v 为车的速度
  • φ ˙ \dot \varphi φ˙ 为车的横摆角速度

都可以通过上游的定位模块以及传感器的信号采集到,视为已知。

   所以只要知道 x r 、 y r 、 θ r 、 k 、 s r x_r、y_r、\theta_r 、k、s_r xryrθrksr s r s_r sr 为投影点在自然坐标系下的坐标)
在这里插入图片描述

   如果知道这些信息,就可以把误差计算出来。

   注意:如果规划曲线为连续曲线,那么可能导致投影点不唯一。

2、连续曲线的投影问题

   举几个例子:
在这里插入图片描述

A A A 的投影定义:如果 A A A A ′ A' A 的连线与 A ′ A' A 的切线垂直,则称 A ′ A' A A A A 的投影。

  • 直线
    直线的投影是最简单的, A A A 在直线的投影就是 A ′ A' A

  • 简单曲线
    简单曲线的投影比较简单,只要 A A A A ′ A' A 的连线和 A ′ A' A 的切线方向 τ ⃗ \vec \tau τ 垂直,则 A ′ A' A 就是它的投影。


  • 对于封闭的圆, A A A 正好在圆心处,按照定义, A A A 在圆上的投影有无数个,圆上每点都是它的投影。

  • 椭圆
    在椭圆半长轴上, A A A 的投影有四个。

   如果曲线连续,不仅求投影比较麻烦,而且要处理多值问题,即投影可能不止一个,这是非常麻烦的事情。

   在这里并不是说连续曲线的规划就不能用,各有各种用法,要用连续曲线做规划,在规划层面上就必须要考虑到投影的多值性问题。

3、离散轨迹点的误差

如果轨迹规划是离散的,怎么求投影相对比较容易处理?

   本篇博客讲解离散轨迹点的误差计算,应用比较广泛,且相对较简单。第四节讲过的是连续轨迹曲线的误差计算公式。

   比如,轨迹规划出一系列离散点:
在这里插入图片描述

   要用离散的轨迹规划做相应的控制,就要进行相应的误差计算,离散轨迹点的每一点都包含四个信息:
( x 1 , y 1 , θ 1 , κ 1 ) ( x 2 , y 2 , θ 2 , κ 2 ) . . . ( x n , y n , θ n , κ n ) \begin{gathered} (x_1,y_1,\theta_1,\kappa_1) \\ (x_2,y_2,\theta_2,\kappa_2) \\ ...\\ (x_n,y_n,\theta_n,\kappa_n) \end{gathered} (x1,y1,θ1,κ1)(x2,y2,θ2,κ2)...(xn,yn,θn,κn)   这仅仅是做横向控制,如果要做纵向控制的话,还需要包含离散点的在自然坐标系下的 s 1 、 s 2 、 s 3 s_1、s_2、s_3 s1s2s3。不过本节只讲横向控制,只需要这 4 4 4 个信息就够了。


二、离散轨迹规划误差计算步骤

   下面计算基于离散轨迹规划的误差 e d 、 e ˙ d 、 e φ 、 e ˙ φ e_d、\dot e_d、e_\varphi、\dot e_\varphi ede˙deφe˙φ

1、匹配点

   第一步,找到离散轨迹规划点中与真实位置 ( x , y ) (x,y) (x,y) 最近的点,计算规划点到真实位置之间的距离,比大小找出最短距离,最短距离对应的点就是匹配点。

2、投影点

   第二步,计算投影点。

匹配点和投影点是什么关系呢?

   比如,在直线里有三个规划点:
在这里插入图片描述

   图中蓝色点为匹配点,红色点为真正的投影点。投影点是不在规划轨迹点中的理想点。因此,匹配点并不等于投影点。

匹配点能否近似代替投影点?

   用最短距离的匹配点近似代替投影点,理论上可以,但有个前提,规划点要特别密集,这样匹配点和投影点的位置比较接近,越密就越接近,近似程度就越高。但是理论归理论,现实生活中这种方法依然不可行:

  • 规划点不可能特别密集
  • 规划点取得非常密集会增加计算负担

   在找匹配点时,是计算所有规划点和真实位置 ( x , y ) (x,y) (x,y) 的距离,规划点越密集,计算量就越大。

   在自动驾驶中控制的实时性要求最高,要尽可能不惜代价提升控制代码的运行速度,所以用匹配点近似投影点在实际运用中不可行。

   可以通过匹配点近似计算出投影点。

   假设有一条连续曲线,上面有三个离散规划点:
在这里插入图片描述

   规划都是离散点,没有连续曲线,匹配点距离真实点最近,附带相关信息 ( x m , y m , θ m , κ m ) (x_{m},y_{m},\theta_{m},\kappa_{m}) (xm,ym,θm,κm),真实点也有信息 ( x , y , θ , κ ) (x,y,\theta,\kappa) (x,y,θ,κ),通过真实点和匹配点的信息,把投影点信息近似计算出来。

   假设从匹配点到投影点曲线的曲率不变,即近似认为匹配点的曲率等于投影点的曲率。

   黑色曲线是规划轨迹,这是真实的连续轨迹,根据连续轨迹得到离散的规划点。

   要计算的是真实点到投影点的横向距离 e d e_d ed,已知图中红色向量:
x ⃗ − x ⃗ m = ( x − x m , y − y m ) \vec{x}-\vec{x}_m=(x-x_m,y-y_m) x x m=(xxm,yym)   由匹配点的航向角 θ m \theta_m θm 可知切向向量 τ ⃗ m \vec \tau_m τ m和法向向量 n ⃗ m \vec n_m n m,即:
τ ⃗ m = ( cos ⁡ θ m , sin ⁡ θ m ) n ⃗ m = ( − sin ⁡ θ m , cos ⁡ θ m ) \vec{\tau}_m=\left( \cos \theta _m,\sin \theta _m \right) \quad \vec{n}_m=\left( -\sin \theta _m,\cos \theta _m \right) τ m=(cosθm,sinθm)n m=(sinθm,cosθm)

3、横向误差

   第三步,横向误差 e d e_d ed 近似等于红色向量 在 n ⃗ m \vec n_m n m 方向上的投影:
e d ≈ ( x ⃗ − x ⃗ m ) ⋅ n ⃗ m e_d\approx \left( \vec{x}-\vec{x}_m \right) \cdot \vec{n}_m ed(x x m)n m
   注意 e d e_d ed 有正负,为正意味着真实位置在规划位置的左边,为负意味着在右边。

   若规划轨迹是直线,即曲率 κ = 0 \kappa=0 κ=0 ,这种近似完全没有任何误差, e d = ( x ⃗ − x ⃗ m ) ⋅ n ⃗ m e_d= \left( \vec{x}-\vec{x}_m \right) \cdot \vec{n}_m ed=(x x m)n m,这是非常好的性质,有了此性质后:

  • 在曲线段,横向误差 e d e_d ed 和曲率、弧长有关
  • 在直线段,横向误差 e d e_d ed 和曲率、弧长都没有关系,因为上式严格相等

   意味着在直线段用非常少的轨迹规划点就可以完整地进行轨迹跟踪。

   所以只需在曲线曲率比较大的位置,规划的离散轨迹密一点;在直线段或者曲率特别小的位置完全可以用几个点一笔带过,节省计算资源。

4、纵向误差

   第四步,匹配点与投影点之间的弧长 e s e_s es 等于红色向量在 τ ⃗ m \vec{\tau}_m τ m 上的投影:
e s ≈ ( x ⃗ − x ⃗ m ) ⋅ τ ⃗ m e_s\approx \left( \vec{x}-\vec{x}_m \right) \cdot \vec{\tau}_m es(x x m)τ m
   注意:弧长有正负。

   比如,有一条曲线:
在这里插入图片描述

   这种情况下, τ ⃗ m \vec{\tau}_m τ m ( x ⃗ − x ⃗ m ) (\vec x-\vec x_m) (x x m) 夹角小于 90 ° 90° 90° ,点乘为正,意味着投影点在匹配点前面。

   如果是这种情况:
在这里插入图片描述

   其中, τ ⃗ m \vec{\tau}_m τ m ( x ⃗ − x ⃗ m ) (\vec x-\vec x_m) (x x m)夹角大于 90 ° 90° 90° ,点乘为负,意味着投影点在匹配点后面。

5、投影点的航向角

   第五步,也就是最关键的一步, 投影点的航向角 θ r \theta _r θr
θ r = θ m + κ m e s \theta _r=\theta _m+\kappa _me_s θr=θm+κmes   比如,有一段圆弧:
在这里插入图片描述

   圆弧上有两个点,与曲线切线方向的夹角分别是 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2,根据几何关系,绿色角是 θ 1 − θ 2 \theta_1-\theta_2 θ1θ2,那么
θ 1 − θ 2 = s R = κ s \theta_{1}-\theta_{2}=\frac{s}{R}=\kappa s θ1θ2=Rs=κs    又因为 e s e_s es 近似认为是匹配点与投影点间的弧长,所以
θ r = θ m + κ m e s \theta _r=\theta _m+\kappa _me_s θr=θm+κmes

6、四个式子

   第六步,得到四个转换关系式子:
e d = ( x ⃗ − x ⃗ m ) ⋅ n ⃗ m e s = ( x ⃗ − x ⃗ m ) ⋅ τ m θ r = θ m + k m ⋅ e s κ r = κ m \begin{aligned} e_d&=\left( \vec{x}-\vec{x}_m \right) \cdot \vec{n}_m\\ e_s&=\left( \vec{x}-\vec x_m \right) \cdot \tau _m\\ \theta _r&=\theta _m+k_m\cdot e_s\\ \kappa _r&=\kappa _m\\ \end{aligned} edesθrκr=(x x m)n m=(x x m)τm=θm+kmes=κm
s ˙ = ∣ v ⃗ ∣ cos ⁡ ( θ − θ r ) 1 − κ e d e φ = φ − θ r e ˙ φ = φ ˙ − θ ˙ r = φ − κ r s ˙ e ˙ d = ∣ v ⃗ ∣ sin ⁡ ( θ − θ r ) \begin{aligned} \dot{s}&=\frac{|\vec{v}|\cos \left( \theta -\theta _r \right)}{1-\kappa e_d}\\ e_{\varphi}&=\varphi -\theta _r\\ \dot{e}_{\varphi}&=\dot{\varphi}-\dot{\theta}_r=\varphi -\kappa _r\dot{s}\\ \dot{e}_d&=|\vec{v}|\sin \left( \theta -\theta _r \right)\\ \end{aligned} s˙eφe˙φe˙d=1κedv cos(θθr)=φθr=φ˙θ˙r=φκrs˙=v sin(θθr)   可计算出 e d 、 e ˙ d 、 e φ 、 e ˙ φ e_d、\dot{e}_d、e_{\varphi}、\dot{e}_{\varphi} ede˙deφe˙φ


三、总结

   最终,横向控制
u = − k e r r + δ f u=-ke_{rr}+\delta _f u=kerr+δf其中, k = l q r ( A , B , Q , R ) {{k}=\mathrm{lqr}(A,B,Q,R)} k=lqr(A,B,Q,R) d l q r ( A ˉ , B ˉ , Q , R ) {{\mathrm{dlqr}(\bar{A},\bar{B},Q,R)}} dlqr(Aˉ,Bˉ,Q,R)的解。

关于这些量的计算:

  • A B AB AB 的计算在第三节和第四节
  • k k k 的计算在第五节
  • δ f \delta_f δf 的计算在第六节
  • 误差 e r r e_{rr} err 的计算在本节。

至此,横向控制理论部分结束。

   在下一节会详细演示怎么把程序代码编写出来,将理论变成实际。第八节是横向控制的核心,将用到前七节所有知识。

   本篇博客到此结束,欢迎关注!


后记:

🌟 感谢您耐心阅读这篇关于 离散规划轨迹的误差计算 的技术博客。 📚

🎯 如果您觉得这篇博客对您有所帮助,请不要吝啬您的点赞和评论 📢

🌟您的支持是我继续创作的动力。同时,别忘了收藏本篇博客,以便日后随时查阅。🚀

🚗 让我们一起期待更多的技术分享,共同探索移动机器人的无限可能!💡

🎭感谢您的支持与关注,让我们一起在知识的海洋中砥砺前行 🚀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/873322.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【数据结构与算法】单向链表

【数据结构与算法】单向链表 文章目录 【数据结构与算法】单向链表前言一、单向链表初始化二、单向链表插入与遍历三、单向链表的删除与清空四、单向链表返回长度以及销毁五、完整代码六、单向链表企业版总结 前言 本篇文章就单向链表初始化,插入遍历功能&#xff…

Windows terminal使用说明

1 terminal基本介绍 1 下载 从微软商店上下载的方式网速比较慢,一种直接的方式是直接用命令行运行命令 winget install --idMicrosoft.WindowsTerminal -e# Window Terminal 安装以及使用(2021最新) 2 ssh配置 # 使用Windows Terminal进行SSH登录 1 通过label…

如何做好网络安全

随着互联网技术的飞速发展,网站已成为企业对外展示、交流和服务的重要窗口。然而,随之而来的网站安全问题也日益凸显,给企业的业务发展和用户数据安全带来了巨大威胁。因此,高度重视网站安全已成为网络安全的首要任务。今天我们就…

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通…

2024国赛数学建模A题B题C题D题E题思路资料模型

开始在本帖实时更新2024国赛数学建模赛题思路代码,文章末尾获取! 持续更新参考思路

FPGA编译与部署方法全方位介绍

FPGA编译与部署是FPGA开发中的核心环节,涉及从代码编写、调试到将设计部署到FPGA硬件的全过程。这个流程需要经过创建项目、编写FPGA VI、模拟调试、编译生成比特流文件,最后将设计部署到硬件上运行。编译的特点在于并行执行能力、定制化硬件实现以及复杂…

string字符会调用new分配堆内存吗

gcc的string默认大小是32个字节,字符串小于等于15直接保存在栈上,超过之后才会使用new分配。

『功能项目』战士的平A特效【35】

我们打开上一篇34武器的切换实例的项目, 本章要做的事情是在战士的每次按A键时在指定位置生成一个平A特效 首先将之前下载的技能拖拽至场景中 完全解压缩后重命名为AEffect 拖拽至预制体文件夹 进入主角动画的战士动画层级 双击第一次攻击 选择Animation 创建事件 …

七. 部署YOLOv8检测器-affine-transformation

目录 前言0. 简述1. 案例运行2. 补充说明3. 代码分析3.1 main.cpp3.2 preprocess.cu 结语下载链接参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》,链接。记录下个人学习笔记,仅供自己参考 本次课程我们来学习课程第七章—部署YOLOv8检测器…

python文件自动化(4)

接上节课内容,在开始正式移动文件到目标文件夹之前,我们需要再思考一个问题。在代码运行之前,阿文的下载文件夹里已经存在一些分类文件夹了,比如图例中“PDF文件”这个文件夹就是已经存在的。这样的话,在程序运行时&am…

SprinBoot+Vue校园数字化图书馆系统的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平台Java领域优质…

FreeRTOS任务调度(抢占式、协作式、时间片轮转)

任务调度 文章目录 任务调度前言一、协作式二、时间片轮转三、抢占式总结 前言 FreeRTOS 是一个开源的实时操作系统,它支持多种调度策略,包括协作式(cooperative)和抢占式(preemptive)调度。 一、协作式 …

堆排序Java

思路 这个代码还不错 https://blog.csdn.net/weixin_51609435/article/details/122982075 就是从下往上进行调整 1. 如何将数组映射成树 对于下面这颗树,原来的数组是: 好,如果调整的话,我们第一个应该调整的是最下边&#x…

压缩文件隐写

1、伪加密 (1)zip伪加密 考点:winhex打开压缩包;搜索504b0102(注意不是文件头部;zip文件头部伪504b0304);从50开始,往后面数第9,10个字符为加密字符,将其设置为0000即可变为无加密状…

JAVAEE初阶第七节(中)——物理原理与TCP_IP

系列文章目录 JAVAEE初阶第七节(中)——物理原理与TCP_IP 文章目录 系列文章目录JAVAEE初阶第七节(中)——物理原理与TCP_IP 一.应用层重点协议)1. DNS2 .NAT3. NAT IP转换过程 4 .NAPT5. NAT技术的缺陷6. HTTP/HTTPS…

野火霸天虎V2学习记录

文章目录 嵌入式开发常识汇总1、嵌入式Linux和stm32之间的区别和联系2、stm32程序下载方式3、Keil5安装芯片包4、芯片封装种类5、STM32命名6、数据手册和参考手册7、什么是寄存器、寄存器映射和内存映射8、芯片引脚顺序9、stm32芯片里有什么10、存储器空间的划分11、如何理解寄…

如何部署Vue+Springboot项目

很多同学在项目上线的部署遇到困难,不懂得怎么部署项目,本文将会带大家手把手从前端部署、java部署来教会大家。 如果项目涉及到了docker相关中间件的环境配置,请参看:https://blog.csdn.net/weixin_73195042/article/details/13…

C#发送正文带图片带附件的邮件

1,开启服务,获取授权码。以QQ邮箱为例: 点击管理服务,进入账号与安全页面 2,相关设置参数,以QQ邮箱为例: 登录时,请在第三方客户端的密码输入框里面填入授权码进行验证。&#xff0…

解决 Ant Design Vue Upload 组件在苹果手机上只能拍照无法选择相册的问题

最近上线发现了这个问题&#xff0c;看别的文档改了很多属性也不行&#xff0c;发现element组件就可以&#xff0c;对比之后就知道问题所在。 原因&#xff1a; 默认情况下&#xff0c;iOS 设备会将 <input type"file"> 的 capture 属性设置为 true&#xff0…

[数据集][目标检测]电动车头盔佩戴检测数据集VOC+YOLO格式4235张5类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;4235 标注数量(xml文件个数)&#xff1a;4235 标注数量(txt文件个数)&#xff1a;4235 标注…