Prompt-“设计提示模板:用更少数据实现预训练模型的卓越表现,助力Few-Shot和Zero-Shot任务”

Prompt任务(Prompt Tasks)

通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等任务。

1.背景介绍

prompt 是当前 NLP 中研究小样本学习方向上非常重要的一个方向。举例来讲,今天如果有这样两句评论:

  1. 什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!
  2. 这破笔记本速度太慢了,卡的不要不要的。

现在我们需要根据他们描述的商品类型进行一个分类任务,

即,第一句需要被分类到「水果」类别中;第二句则需要分类到「电脑」类别中。

一种直觉的方式是将该问题建模成一个传统文本分类的任务,通过人工标注,为每一个类别设置一个 id,例如:

{
    '电脑': 0,
    '水果': 1,
    ....
}

这样一来,标注数据集就长这样:

什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!  1
这破笔记本速度太慢了,卡的不要不要的。    0
...

这种方法是可行的,但是需要「较多的标注数据」才能取得不错的效果。

由于大多数预训练模型(如 BRET)在 pretrain 的时候都使用了 [MASK] token 做 MLM 任务,而我们在真实下游任务中往往是不会使用到 [MASK] 这个 token,这就意味着今天我们在训练下游任务时需要较多的数据集去抹平上下游任务不一致的 gap。

那,如果我们没有足够多的训练数据怎么办呢?

prompt learning 的出现就是为了解决这一问题,它将 [MASK] 的 token 引入到了下游任务中,将下游任务构造成和 MLM 类似的任务。

举例来讲,我们可以将上述评论改写为:

这是一条[MASK][MASK]评论:这破笔记本速度太慢了,卡的不要不要的。

然后让模型去预测两个 [MASK] token 的真实值是什么,那模型根据上下文能推测出被掩码住的词应该为「电脑」。

由于下游任务中也使用了和预训练任务中同样的 MLM 任务,这样我们就可以使用更少的训练数据来进行微调了。

但,这还不是 P-tuning。

通过上面的例子我们可以观察到,构建句子最关键的部分是在于 prompt 的生成,即:

「这是一条[MASK][MASK]评论:」(prompt) + 这破笔记本速度太慢了,卡的不要不要的。(content)

被括号括起来的前缀(prompt)的生成是非常重要的,不同 prompt 会极大影响模型对 [MASK] 预测的正确率。

那么这个 prompt 怎么生成呢?

我们当然可以通过人工去设计很多不同类型的前缀 prompt,我们把他们称为 prompt pattern,例如:

这是一条[MASK][MASK]评论:
下面是一条描述[MASK][MASK]的评论:
[MASK][MASK]:
...

但是人工列这种 prompt pattern 非常的麻烦,不同的数据集所需要的 prompt pattern 也不同,可复用性很低。

那么,我们能不能通过机器自己去学习 prompt pattern 呢?

这,就是 P-Tuning。

1.1 P-Tuning

人工构建的模板对人类来讲是合理的,但是在机器眼中,prompt pattern 长成什么样真的关键吗?

机器对自然语言的理解和人类对自然语言的理解很有可能不尽相同,我们曾经有做一个 model attention 和人类对语言重要性的理解的对比实验,发现机器对语言的理解和人类是存在一定的偏差的。

那么,我们是不是也不用特意为模型去设定一堆我们觉得「合理」的 prompt pattern,而是让模型自己去找它们认为「合理」的 prompt pattern 就可以了呢?

因此,P-Tuning 的训练一共分为:prompt token(s) 生成、mask label 生成、mlm loss 计算 三个步骤。

1.1.1 prompt token(s) 生成

既然现在我们不用人工去构建 prompt 模板,我们也不清楚机器究竟喜欢什么样的模板……

那不如我们就随便凑一个模板丢给模型吧。

听起来很草率,但确实就是这么做的。

我们选用中文 BERT 作为 backbon 模型,选用 vocab.txt 中的 [unused] token 作为构成 prompt 模板的元素。

[unused] 是 BERT 词表里预留出来的未使用的 token,其本身没有什么含义,随意组合也不会产生很大的语义影响,这也是我们使用它来构建 prompt 模板的原因。

那么,构建出来的 prompt pattern 就长这样:

[unused1][unused2][unused3][unused4][unused5][unused6] 

1.1.2 mask label 生成

完成 prompt 模板的构建后,我们还需要把 mask label 给加到句子中,好让模型帮我们完成标签预测任务。

我们设定 label 的长度为 2(‘水果’、‘电脑’,都是 2 个字的长度),并将 label 塞到句子的开头位置:

[CLS][MASK][MASK]这破笔记本速度太慢了,卡的不要不要的。[SEP]

其中 [MASK] token 就是我们需要模型帮我们预测的标签 token,现在我们把两个部分拼起来:

[unused1][unused2][unused3][unused4][unused5][unused6][CLS][MASK][MASK]这破笔记本速度太慢了,卡的不要不要的。[SEP]

这就是我们最终输入给模型的样本。

1.1.3 mlm loss 计算

下面就要开始进行模型微调了,我们喂给模型这样的数据:

[unused1][unused2][unused3][unused4][unused5][unused6][CLS][MASK][MASK]这破笔记本速度太慢了,卡的不要不要的。[SEP]

并获得模型预测 [MASK] token 的预测结果,并计算和真实标签之间的 CrossEntropy Loss。

P-Tuning 中标签数据长这样:

水果    什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!
电脑    这破笔记本速度太慢了,卡的不要不要的。
...

也就是说,我们需要计算的是模型对 [MASK] token 的输出与「电脑」这两个标签 token 之间的 CrossEntropy Loss,以教会模型在这样的上下文中,被 [MASK] 住的标签应该被还原成「物品类别」。

1.1.4 实验

我们选用 63 条评论(8 个类别)的评论作为训练数据,在 417 条评论上作分类测试,模型 F1 能收敛在 76%。通过实验结果我们可以看到,基于 prompt 的方式即使在训练样本数较小的情况下模型也能取得较为不错的效果。相比于传统的分类方式,P-Tuning 能够更好的缓解模型在小样本数据下的过拟合,从而拥有更好的鲁棒性。

论文链接:https://arxiv.org/pdf/2103.10385.pdf

2.PET (PatternExploiting Training)

  • 环境安装
    本项目基于 pytorch + transformers 实现,运行前请安装相关依赖包:
pip install -r ../../requirements.txt

2.1 数据集准备

2.1.1 标签数据准备

项目中提供了一部分示例数据,根据用户评论预测用户评论的物品类别(分类任务),数据在 data/comment_classify

若想使用自定义数据训练,只需要仿照示例数据构建数据集即可:

水果	什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!
书籍	为什么不认真的检查一下, 发这么一本脏脏的书给顾客呢!
酒店	性价比高的酒店,距离地铁近,邻华师大,环境好。
...

每一行用 \t 分隔符分开,前半部分为标签(label),后半部分为原始输入

2.1.2 Verbalizer准备

Verbalizer用于定义「真实标签」到「标签预测词」之间的映射。

在有些情况下,将「真实标签」作为 [MASK] 去预测可能不具备很好的语义通顺性,因此,我们会对「真实标签」做一定的映射。

例如:

"日本爆冷2-1战胜德国"是一则[MASK][MASK]新闻。	体育

这句话中的标签为「体育」,但如果我们将标签设置为「足球」会更容易预测。

因此,我们可以对「体育」这个 label 构建许多个子标签,在推理时,只要预测到子标签最终推理出真实标签即可,如下:

体育 -> 足球,篮球,网球,棒球,乒乓,体育
...

项目中提供了一部分示例数据在 data/comment_classify/verbalizer.txt

若想使用自定义数据训练,只需要仿照示例数据构建数据集即可:

电脑	电脑
水果	水果
平板	平板
衣服	衣服
酒店	酒店
洗浴	洗浴
书籍	书籍
蒙牛	蒙牛
手机	手机

在例子中我们使用 1 对 1 的verbalizer,若想定义一对多的映射,只需要在后面用 ',' 分隔即可, e.g.:

...
水果	苹果,香蕉,橘子
...

2.1.3 Prompt设定

promot是人工构建的模板,项目中提供了一部分示例数据在 data/comment_classify/prompt.txt

这是一条{MASK}评论:{textA}

其中,用大括号括起来的部分为「自定义参数」,可以自定义设置大括号内的值。

示例中 {MASK} 代表 [MASK] token 的位置,{textA} 代表评论数据的位置。

你可以改为自己想要的模板,例如想新增一个 {textB} 参数:

{textA}{textB}{MASK}同的意思。

此时,除了修改 prompt 文件外,还需要在 utils.py 文件中 convert_example() 函数中修改 inputs_dict 用于给对应的给每一个「自定义参数」赋值:

...
content = content[:max_seq_len-10]      # 防止当[MASK]在尾部的时候被截掉

inputs_dict={                           # 传入对应prompt的自定义参数
    'textA': content,                   
    'MASK': '[MASK]',
    'textB' = ...                       # 给对应的自定义字段赋值
}
...

2.2. 模型训练

修改训练脚本 train.sh 里的对应参数, 开启模型训练:

python pet.py \
    --model "bert-base-chinese" \
    --train_path "data/comment_classify/train.txt" \
    --dev_path "data/comment_classify/dev.txt" \
    --save_dir "checkpoints/comment_classify/" \
    --img_log_dir "logs/comment_classify" \
    --img_log_name "BERT" \
    --verbalizer "data/comment_classify/verbalizer.txt" \       # verbalizer文件位置
    --prompt_file "data/comment_classify/prompt.txt" \          # prompt_file文件位置
    --batch_size 8 \
    --max_seq_len 256 \
    --valid_steps 40  \
    --logging_steps 5 \
    --num_train_epochs 200 \
    --max_label_len 2 \                                         # 子标签最大长度
    --rdrop_coef 5e-2 \
    --device "cuda:0"                                           # 指定使用GPU

正确开启训练后,终端会打印以下信息:

...
DatasetDict({
    train: Dataset({
        features: ['text'],
        num_rows: 63
    })
    dev: Dataset({
        features: ['text'],
        num_rows: 590
    })
})
Prompt is -> 这是一条{MASK}评论:{textA}100%|████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 12.96ba/s]
100%|████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00,  2.55ba/s]
global step 5, epoch: 0, loss: 3.74432, speed: 2.67 step/s
global step 10, epoch: 1, loss: 3.06417, speed: 5.86 step/s
global step 15, epoch: 1, loss: 2.51641, speed: 5.73 step/s
global step 20, epoch: 2, loss: 2.12264, speed: 5.84 step/s
global step 25, epoch: 3, loss: 1.80121, speed: 5.82 step/s
global step 30, epoch: 3, loss: 1.52964, speed: 5.78 step/s
...

logs/sentiment_classification 文件下将会保存训练曲线图:

2.3. 模型预测

完成模型训练后,运行 inference.py 以加载训练好的模型并应用:

...
contents = [
        '地理环境不错,但对面一直在盖楼,门前街道上打车不方便。',
        '跟好朋友一起凑单买的,很划算,洗发露是樱花香的,挺好的。。。'
    ]                           # 自定义评论
res = inference(contents)       # 推测评论类型
...

运行推理程序:

python inference.py

得到以下推理结果:

Prompt is -> 这是一条{MASK}评论:{textA}。
Used 0.47s.
inference label(s): ['酒店', '洗浴']

3.P-tuning:Auto Learning prompt pattern

  • 环境安装
    本项目基于 pytorch + transformers 实现,运行前请安装相关依赖包:
pip install -r ../../requirements.txt

torch
transformers==4.22.1
datasets==2.4.0
evaluate==0.2.2
matplotlib==3.6.0
rich==12.5.1
scikit-learn==1.1.2
requests==2.28.1

3.1 数据集准备

3.1.1 标签数据准备

项目中提供了一部分示例数据,根据用户评论预测用户评论的物品类别(分类任务),数据在 data/comment_classify

若想使用自定义数据训练,只需要仿照示例数据构建数据集即可:

水果	什么苹果啊,都没有苹果味,怪怪的味道,而且一点都不甜,超级难吃!
书籍	为什么不认真的检查一下, 发这么一本脏脏的书给顾客呢!
酒店	性价比高的酒店,距离地铁近,邻华师大,环境好。
...

每一行用 \t 分隔符分开,前半部分为标签(label),后半部分为原始输入

3.1.2 Verbalizer准备

Verbalizer用于定义「真实标签」到「标签预测词」之间的映射。

在有些情况下,将「真实标签」作为 [MASK] 去预测可能不具备很好的语义通顺性,因此,我们会对「真实标签」做一定的映射。

例如:

"日本爆冷2-1战胜德国"是一则[MASK][MASK]新闻。	体育

这句话中的标签为「体育」,但如果我们将标签设置为「足球」会更容易预测。

因此,我们可以对「体育」这个 label 构建许多个子标签,在推理时,只要预测到子标签最终推理出真实标签即可,如下:

体育 -> 足球,篮球,网球,棒球,乒乓,体育
...

项目中提供了一部分示例数据在 data/comment_classify/verbalizer.txt

若想使用自定义数据训练,只需要仿照示例数据构建数据集即可:

电脑	电脑
水果	水果
平板	平板
衣服	衣服
酒店	酒店
洗浴	洗浴
书籍	书籍
蒙牛	蒙牛
手机	手机

在例子中我们使用 1 对 1 的verbalizer,若想定义一对多的映射,只需要在后面用 ',' 分隔即可, e.g.:

...
水果	苹果,香蕉,橘子
...

3.2 模型训练

修改训练脚本 train.sh 里的对应参数, 开启模型训练:

python p_tuning.py \
    --model "bert-base-chinese" \               # backbone
    --train_path "data/comment_classify/train.txt" \
    --dev_path "data/comment_classify/dev.txt" \
    --verbalizer "data/comment_classify/verbalizer.txt" \ # verbalizer存放地址
    --save_dir "checkpoints/comment_classify/" \
    --img_log_dir "logs/comment_classify" \     # loss曲线图存放地址
    --img_log_name "BERT" \                     # loss曲线图文件名
    --batch_size 16 \
    --max_seq_len 128 \
    --valid_steps 20  \
    --logging_steps 5 \
    --num_train_epochs 50 \
    --max_label_len 2 \                         # 标签最大长度
    --p_embedding_num 15 \                      # p_token长度
    --device "cuda:0"                           # 指定使用哪块gpu

正确开启训练后,终端会打印以下信息:

...
global step 5, epoch: 1, loss: 6.50529, speed: 4.25 step/s
global step 10, epoch: 2, loss: 4.77712, speed: 6.36 step/s
global step 15, epoch: 3, loss: 3.55371, speed: 6.19 step/s
global step 20, epoch: 4, loss: 2.71686, speed: 6.38 step/s
Evaluation precision: 0.70000, recall: 0.69000, F1: 0.69000
best F1 performence has been updated: 0.00000 --> 0.69000
global step 25, epoch: 6, loss: 2.20488, speed: 6.21 step/s
global step 30, epoch: 7, loss: 1.84836, speed: 6.22 step/s
global step 35, epoch: 8, loss: 1.58520, speed: 6.22 step/s
global step 40, epoch: 9, loss: 1.38746, speed: 6.27 step/s
Evaluation precision: 0.75000, recall: 0.75000, F1: 0.75000
best F1 performence has been updated: 0.69000 --> 0.75000
global step 45, epoch: 11, loss: 1.23437, speed: 6.14 step/s
global step 50, epoch: 12, loss: 1.11103, speed: 6.16 step/s
...

logs/sentiment_classification 文件下将会保存训练曲线图:

3.3 模型预测

完成模型训练后,运行 inference.py 以加载训练好的模型并应用:

...
contents = [
    "苹果卖相很好,而且很甜,很喜欢这个苹果,下次还会支持的", 
    "这破笔记本速度太慢了,卡的不要不要的"
]   # 自定义评论
res = inference(contents)       # 推测评论类型
...

运行推理程序:

python inference.py

得到以下推理结果:

inference label(s): ['水果', '电脑']

参考链接:https://github.com/HarderThenHarder/transformers_tasks/blob/main/prompt_tasks/p-tuning

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/87325.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Ubuntu系列弹性云服务器如何安装图形化界面?

​ 参考链接&#xff1a;Ubuntu系列弹性云服务器如何安装图形化界面&#xff1f; 操作场景 为了提供纯净的弹性云服务器系统给客户&#xff0c;Ubuntu系列弹性云服务器默认未安装图形化界面&#xff0c;如果您需要使用图形化界面&#xff0c;请参见本节内容进行安装。 对于GPU加…

Docker是什么?详谈它的框架、使用场景、优势

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 作者会持续更新网络知识和python基础知识&#xff0c;期待你的关注 目录 一、什么是 Docker&#xff1f; 二、Docker 的架构 1、Docker客户端 2、Docker守护进程 3、Docker镜像 4、Docker容器 5、Docker…

基于JAVA SpringBoot和UniAPP的宠物服务预约小程序

随着社会的发展和人们生活水平的提高&#xff0c;特别是近年来&#xff0c;宠物快速进入人们的家中&#xff0c;成为人们生活中重要的娱乐内容之一&#xff0c;过去宠物只是贵族的娱乐&#xff0c;至今宠物在中国作为一种生活方式得到了广泛的认可&#xff0c;随着人们精神文明…

go学习一之go的初体验

go语言学习笔记 一、golang初体验: 1.简单体验案例&#xff1a; package main{ //把这个test.go归属到main import "fmt" //引入一个包 func main(){//输出hellofmt.Println("hello world")} }2.从案例学到的知识点&#xff1a; (1) go文件的后缀是.…

8路光栅尺磁栅尺编码器或16路高速DI脉冲信号转Modbus TCP网络模块 YL99-RJ45

特点&#xff1a; ● 光栅尺磁栅尺解码转换成标准Modbus TCP协议 ● 高速光栅尺磁栅尺4倍频计数&#xff0c;频率可达5MHz ● 模块可以输出5V的电源给光栅尺或传感器供电 ● 支持8个光栅尺同时计数&#xff0c;可识别正反转 ● 可以设置作为16路独立DI高速计数器 ● 可网…

Ensp+Wireshark+VirtualBox+WinPcap

软件下载 [名称]&#xff1a;Ensp及辅助程序 [大小]&#xff1a;830.65MB [语言]&#xff1a;Chinese [安装环境]&#xff1a;Win7/Win8/Win10 [下载链接]&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1KbypgxAGQy07ijSAj3SvsQ 提取码&#xff1a;ly88 软件介…

论文笔记:从不平衡数据流中学习的综述: 分类、挑战、实证研究和可重复的实验框架

0 摘要 论文&#xff1a;A survey on learning from imbalanced data streams: taxonomy, challenges, empirical study, and reproducible experimental framework 发表&#xff1a;2023年发表在Machine Learning上。 源代码&#xff1a;https://github.com/canoalberto/imba…

【自用】无法通过ESP32创建HomeAssistant实体问题解决(MQTT对ESP32创建实体请求无应答)

一、问题描述 1.使用 MQTTX 测试客户端能够创建实体 当通过 MQTTX 发送注册实体请求的时候&#xff0c;实体能够在 MQTT 服务器中注册成功。 2.使用 ESP32 无法创建实体 在ESP32中通过 publish() 函数发送注册请求的时候&#xff0c;并不会报任何错误&#xff0c;但 MQTT 服…

uCharts 运行微信小程序时,图表放在scroll-view中点击后不能正确获取点击的currentIndex一直为-1

图表在APP和H5中的点击位置是正常的,在微信小程序中会出现点击位置不对且有部分地方点击不到,最终我的解决方法如下。 1.查看包裹图表的元素中有没有元素开启了定位,可以去除定位属性试一试。 2.为微信平台的图表添加 isScrollView="true"属性。 解决方案: 添加 …

写得了代码,焊得了板!嵌入式开发工程师必修之代码管理方案(中)

目录 2.2 分仓、权限与依赖问题 2.3 基于 Git 进行多仓管理 Git submodule Git subtree Script/CMake Git-Repo Conan 本文来自 武让 极狐GitLab 高级解决方案架构师 &#x1f31f; 前一篇文章&#xff0c;作者介绍了嵌入式开发场景的代码管理特点与诉求&#xff0c;以及…

Redis下载与安装

文章目录 Redis简介下载&#xff0c;安装和配置&#xff08;cmd&#xff09;图形化工具 Redis 简介 下载&#xff0c;安装和配置&#xff08;cmd&#xff09; 开启redis服务 1.在解压出来的文件夹中打开cmd 2.输入 redis-server.exe redis.windows.conf即可开启服务 可以看到…

pgadmin4中的备份与恢复

一&#xff0c;postgresql 数据的备份与恢复 &#xff08;一&#xff09;数据库备份与恢复 1&#xff0c;备份 windows环境 1> dump 逻辑备份 1&#xff0c;用管理员身份打开power shell 2&#xff0c;切换到本机 postgresql 安装目录下的 bin 目录&#xff1a; PS C…

ui设计师简历自我评价(合集)

UI设计最新面试题及答案 1、说说你是怎么理解UI的? UI是最直观的把产品展示展现在用户面前的东西&#xff0c;是一个产品的脸面。人开始往往是先会先喜欢上美好的事物后&#xff0c;在去深究内在的东西的。 那么也就意味着一个产品的UI首先要做的好看&#xff0c;无论风格是…

Squaretest 1.8.3 安装激活

1. 插件下载 2. 离线安装 3. 插件激活

RedisDesktopManager 连接redis

redis查看是否启动成功 ps -ef | grep redis以上未启动成功 cd /usr/local/bin/ 切换根目录 sudo -i 开启服务端 ./redis-server /usr/local/redis/redis.conf 开启客户端 ./redis-cli

一款轻量级开发者工具,提高开发效率

Devkits Devkits 是一款轻量级桌面端应用&#xff0c;提供了一系列开发者工具&#xff0c;提高开发效率。 离线。类似的在线工具已经不少了&#xff0c;但是大多数都是在线的&#xff0c;网络不好的时候就很难用了。Devkits 提供了离线使用的功能&#xff0c;可以在没有网络的…

2023-8-23 合并集合

题目链接&#xff1a;合并集合 #include <iostream>using namespace std;const int N 100010;int n, m; int p[N];int find(int x) {if(p[x] ! x) p[x] find(p[x]);return p[x]; }int main() {cin >> n >> m;for(int i 1; i < n; i) p[i] i;while(m…

【Linux】临界资源和临界区

目录 一、临界资源 二、如何实现对临界资源的互斥访问 1、互斥量 2、信号量 3、临界区 三、临界区 四、进程进入临界区的调度原则 一、临界资源 概念&#xff1a;临界资源是一次仅允许一个进程使用的共享资源&#xff0c;如全局变量等。 二、如何实现对临界资源的互斥访问 …

Spring 自动装配机制详解

文章目录 一、手动装配二、自动装配1. XML 方式2. 注解方式 一、手动装配 首先知道 Spring 装配是干了件啥事&#xff1f;我的理解&#xff0c;它就是用来解决 bean 之间依赖关系的一个手段。 比如说我这里有一个 People 类和一个 Dog 类&#xff0c;People 依赖 Dog&#xff…

【Redis】Redis中的布隆过滤器

【Redis】Redis中的布隆过滤器 前言 在实际开发中&#xff0c;会遇到很多要判断一个元素是否在某个集合中的业务场景&#xff0c;类似于垃圾邮件的识别&#xff0c;恶意IP地址的访问&#xff0c;缓存穿透等情况。类似于缓存穿透这种情况&#xff0c;有许多的解决方法&#xf…