前言:
花朵作为自然界中的重要组成部分,不仅在生态学上具有重要意义,也在园艺、农业以及艺术领域中占有一席之地。随着图像识别技术的发展,自动化的花朵分类对于植物研究、生物多样性保护以及园艺爱好者来说变得越发重要。为了提高花朵分类的效率和准确性,我们启动了基于YOLO V8的花朵分类智能识别系统项目。该项目利用深度学习技术,通过分析花朵图像,自动识别并分类不同种类的花朵,为用户提供一个高效的花朵识别工具。
通过对102种类别的花朵数据集进行深入分析和精确标注,我们训练了YOLO V8模型,使其能够准确识别和分类各种花朵。这一系统能够处理高质量的图像数据,提供准确的分类结果,即使在花朵形态多变和环境复杂的情况下,也能保持高准确度。
基于此项目,设计了一个使用Pyqt5库来搭建页面展示系统。本系统支持的功能包括训练模型的导入、初始化;置信度与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;摄像头的上传、检测、可视化结果展示与结束检测;已检测目标信息列表、位置信息;以及推理用时。本博文提供了完整的Python代码和使用教程,适合新入门的朋友参考,完整代码资源文件请转至文末的下载链接。
优势:
-
多种类识别:系统能够识别102种不同种类的花朵,覆盖了广泛的花卉种类。
-
高准确性:YOLO V8模型经过专门训练,提高了对花朵特征的识别准确度。
-
实时性:系统能够快速处理图像数据,提供实时的花朵分类结果,适用于需要快速响应的应用场景。
-
鲁棒性:即使在花朵姿态多变、环境复杂的情况下,系统也能保持较高的识别率。
-
用户友好:系统界面简洁直观,易于用户操作和理解分类结果。
应用场景:
-
植物研究:系统可以辅助植物学家和研究人员快速识别和分类植物,促进植物分类学的研究。
-
生物多样性保护:在自然保护区和生态调查中,系统可以帮助监测和记录不同种类的花朵,评估生物多样性。
-
园艺应用:为园艺爱好者和专业人士提供花朵识别工具,帮助他们更好地了解和照顾植物。
-
农业管理:在农业生产中,系统可以用于识别和分类作物花朵,为作物管理提供信息支持。
-
教育工具:作为教育工具,帮助学生学习和了解不同种类的花朵,增强自然观察能力。
-
旅游和自然观察:在旅游和自然观察活动中,系统可以帮助游客识别遇到的花卉,增加活动的趣味性和教育性。
通过本项目,我们期望能够为花朵分类领域带来创新性的技术支持,提高分类的效率和准确性,为植物学研究、生物多样性保护和园艺实践提供有力的工具。
一、软件核心功能介绍及效果演示
软件主要功能
-
支持图片、图片批量、视频及摄像头进行检测,同时摄像头可支持内置摄像头和外设摄像头;
-
可对检测结果进行单独分析,并且显示单个检测物体的类别、置信度等;
-
支持图片、视频及摄像头的结果保存,将检测结果保持为excel文件;
界面参数设置说明
-
标签4 摄像头源/相机/网络源;
-
标签5 显卡选择:在进行推理时是否使用显卡,默认勾选(使用显卡);
-
标签6 训练好的模型:最终要进行推理的模型,一般选择最优的一个模型;
视频演示
智能花卉分类检测系统
图片检测演示
-
点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:
-
点击表格中的指定行,界面会显示该行表格所写的信息内容。
视频检测演示
-
点击视频按钮图标,打开选择需要检测的视频,在点击开始运行会自动显示检测结果。再次点击停止按钮,会停止检测视频。
-
点击表格中的指定行,界面会显示该行表格所写的信息内容。
摄像头检测演示
-
在选择相机源中输入需要检测的摄像头(可以是电脑自带摄像头,也可以是外接摄像头,视频流等方式),然后点击摄像头图标来固定选择的推理流方式,最后在点击开始运行即可开始检测,当点击停止运行时则关闭摄像头检测。
-
点击表格中的指定行,界面会显示该行表格所写的信息内容。
检测结果保存
点击导出数据按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的检测结果进行保存为excel文档,结果会存储在output目录下。
二、环境搭建
创建专属环境
conda create -n yolo python==3.8
激活专属环境
conda activate yolo
安装torch-GPU库
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "torch-2.0.1+cu118-cp38-cp38-win_amd64.whl"
安装torchvision-GPU库
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple "torchvision-0.15.2+cu118-cp38-cp38-win_amd64.whl"
安装ultralytics库
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
测试环境
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
此时就表明环境安装成功!!!
安装图形化界面库 pyqt5
pip install pyqt5 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyqt5-tools -i https://pypi.tuna.tsinghua.edu.cn/simple
三、算法原理
YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。
YOLOv8目标检测算法具有如下的几点优势:
(1)更友好的安装/运行方式;
(2)速度更快、准确率更高;
(3)新的backbone,将YOLOv5中的C3更换为C2F;
(4)YOLO系列第一次使用anchor-free;
(5)新的损失函数。
YOLO各版本性能对比
网络结构
YOLOv8模型的整体结构如下图所示:
YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块;另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。
YOLOv8的网络架构包含了多个关键组件,这些组件共同工作以实现快速而准确的目标检测。首先是其创新的特征提取网络(Backbone),YOLOv8的Backbone采用了最新的网络设计理念,通过深层次的特征融合和精细的特征提取策略来增强对目标的识别能力。这一策略的成功关键在于其特征提取器能够充分捕获目标的细微特征,同时保持计算效率。
YOLOv8在训练策略上也进行了优化。与YOLOv7相比,YOLOv8采用了SPFF(Spatial Pyramid Fusion Fast)策略,该策略通过高效的多尺度特征融合提高了模型对不同大小目标的检测能力。此外,YOLOv8在训练过程中引入了一种名为Task Aligned Assigner的新技术,这种技术能够更精准地将预测框与真实目标对齐,从而提高检测的准确率。
在损失函数的设计上,YOLOv8进行了创新,采用了JFL(Joint Family Losses),这是一种集成了多个损失函数的复合损失函数,能够同时优化目标检测的多个方面。这些损失函数包括用于提升模型对目标位置和大小预测准确性的CIOU Loss,以及优化分类准确性的分类损失函数。JFL的设计允许YOLOv8更全面地考虑检测任务中的不同需求,通过协调各种损失来提升总体的性能。
YOLOv8的原理不仅在于其创新的技术点,更在于这些技术如何被综合应用于解决实际的目标检测问题。通过其精心设计的网络架构、高效的训练策略以及综合的损失函数设计,YOLOv8实现了在保持实时性的同时,提高了在复杂场景下的检测准确率。这些改进使得YOLOv8成为了一个强大的工具,适用于从自动驾驶到智能视频监控等多种应用场景。
四、模型的训练、评估与推理
数据集准备
本文使用的 102类的花朵分类 数据集共包含 8189 张图片。
Oxford 102 Flowers Dataset 是一个花卉集合数据集,主要用于图像分类,它分为 102 个类别共计 102 种花,其中每个类别包含 40 到 258 张图像。
该数据集由牛津大学工程科学系于 2008 年发布,相关论文有《Automated flower classification over a large number of classes》。
图片数据集的存放格式如下:
运行 data_process.py 即可得到 datasets 里面的分类数据。
模型训练
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,代码如下:
from ultralytics import YOLO
if __name__ == "__main__":
# build from YAML and transfer weights
model = YOLO("./weights/yolov8n-cls.pt")
# Train the model
model.train(data="./102flowers/datasets", epochs=100, imgsz=640)
训练结果分析
YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
confusion_matrix_normalized.png
results.png
训练 batch
验证 batch
模型推理
模型训练完成后,可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们通过使用该文件进行后续的推理检测。
图片检测代码如下:
from ultralytics import YOLO
if __name__ == "__main__":
# Load a model
model = YOLO('./runs/detect/train/weights/best.pt')
# Run batched inference on a list of images
model("./img", imgsz=640, save=True, device=0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。
五、获取方式
本文涉及到的完整全部程序文件:包括 python源码、数据集、训练好的结果文件、训练代码、UI源码、测试图片视频等(见下图),获取方式见文末:
注意:该代码基于Python3.8开发,运行界面的主程序为GUI.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照requirements.txt配置软件运行所需环境。
关注下方公众号:【AI算法与电子竞赛】,发送【YOLO系列源码】即可获取下载方式
六、链接作者
欢迎关注我的公众号:@AI算法与电子竞赛
硬性的标准其实限制不了无限可能的我们,所以啊!少年们加油吧!