第T10周:数据增强

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/0dvHCaOoFnW8SCp3JpzKxg) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。

我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:

  • 将数据增强模块嵌入model中
  • 在Dataset数据集中进行数据增强

 

一、前期准备工作

1. 设置GPU

import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')

from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    tf.config.experimental.set_memory_growth(gpus[0], True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpus[0]],"GPU")

# 打印显卡信息,确认GPU可用
print(gpus)

2. 加载数据 

关于 tf.keras.preprocessing.image_dataset_from_directory 的介绍,我这里就不赘述了,不明白的同学直接看这里:tf.keras.preprocessing.image_dataset_from_directory() 简介_tf.python.keras preprocessing在哪里-CSDN博客文章浏览阅读1.1w次,点赞14次,收藏69次。函数原型tf.keras.preprocessing.image_dataset_from_directory( directory, labels="inferred", label_mode="int", class_names=None, color_mode="rgb", batch_size=32, image_size=(256, 256), shuffle=True, seed=None, validation__tf.python.keras preprocessing在哪里https://blog.csdn.net/qq_38251616/article/details/117018789

data_dir   = "./34-data/"
img_height = 224
img_width  = 224
batch_size = 32

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.3,
    subset="training",
    seed=12,
    image_size=(img_height, img_width),
    batch_size=batch_size)

由于原始数据集不包含测试集,因此需要创建一个。使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。 

val_batches = tf.data.experimental.cardinality(val_ds)
test_ds     = val_ds.take(val_batches // 5)
val_ds      = val_ds.skip(val_batches // 5)

print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))

 一共有猫、狗两类

class_names = train_ds.class_names
print(class_names)
AUTOTUNE = tf.data.AUTOTUNE

def preprocess_image(image,label):
    return (image/255.0,label)

# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds   = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds  = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds   = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(15, 10))  # 图形的宽为15高为10

for images, labels in train_ds.take(1):
    for i in range(8):
        
        ax = plt.subplot(5, 8, i + 1) 
        plt.imshow(images[i])
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

二、数据增强

我们可以使用 tf.keras.layers.experimental.preprocessing.RandomFliptf.keras.layers.experimental.preprocessing.RandomRotation 进行数据增强

  • tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像。
  • tf.keras.layers.experimental.preprocessing.RandomRotation:随机旋转每个图像
data_augmentation = tf.keras.Sequential([
  tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
  tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])

 第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转。

 data_augmentation的定义,这是一个数据增强层的序列模型

# Add the image to a batch.
image = tf.expand_dims(images[i], 0)
plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = data_augmentation(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0])
    plt.axis("off")

 

三、增强方式

方法一:将其嵌入model中

model = tf.keras.Sequential([
  data_augmentation,
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
])
这样做的好处是:
● 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作。

 方法二:在Dataset数据集中进行数据增强

batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE

def prepare(ds):
    ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
    return ds

 

 四、训练模型

model = tf.keras.Sequential([
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(len(class_names))
])
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
● 损失函数(loss):用于衡量模型在训练期间的准确率。
● 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
● 评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

 开始训练

epochs=20
history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

 

准确率

loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)

 

五、自定义增强函数 

import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):
    seed = (random.randint(0,9), 0)
    # 随机改变图像对比度
    stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
    return stateless_random_brightness

 

image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
plt.figure(figsize=(8, 8))
for i in range(9):
    augmented_image = aug_img(image)
    ax = plt.subplot(3, 3, i + 1)
    plt.imshow(augmented_image[0].numpy().astype("uint8"))

    plt.axis("off")

 那么如何将自定义增强函数应用到我们数据上呢?请参考上文的 preprocess_image 函数,将 aug_img 函数嵌入到 preprocess_image 函数中(函数在加载数据部分),在数据预处理时完成数据增强就OK啦

总结

数据增强有着关键的作用,本文讲述了两种方式,三种方法,方式有嵌入到模型中进行数据增强,好处是能获得GPU加速,但是只能在训练阶段增强,第二种方式就是可以单独拿出一个数据增强模块,在数据集中进行增强,设置一个序列模型sequential,里面存有各种数据增强方法。方法有随机翻转,垂直的水平的,还有固定角度翻转,和随机改变图像对比度。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/872738.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

iOS——APP启动流程

APP启动 APP启动主要分为两个阶段:pre-main和main之后,而APP的启动优化也主要是在这两个阶段进行的。 main之后的优化:1. 减少不必要的任务,2.必要的任务延迟执行,例如放在控制器界面等等。 APP启动的大致过程&#…

云原生技术:‌引领数字化转型的新浪潮

云原生技术:‌引领数字化转型的新浪潮 在数字化转型的时代背景下,‌企业面临着前所未有的挑战与机遇。‌随着云计算技术的飞速发展,‌云原生技术作为一种新型的应用程序开发和部署方式,‌正逐步成为构建高可用、‌可扩展应用程序…

景联文科技:专业视频标注服务助力计算机视觉应用升级

视频标注是指对视频内容进行分析,并在视频中的特定对象、行为或事件上添加标签的过程。 视频标注包括: 1. 对象检测与跟踪 •对象检测:在每一帧中识别并定位特定的对象,如人、车、动物等。 •对象跟踪:跟踪这些对象…

使用html+css+layui实现动态表格组件

1、概述 需求,表格第一列指标可配置通过后端api传进来,表格显示数据以及鼠标触摸后气泡弹出层提示信息都是从后端传过来,实现动态表格的组件!!实现效果如下: 接口标准数据格式如下: {"da…

Unity TMP (TextMeshPro) 更新中文字符集

TMP更新中文字符集 1 字符集缺失说明2 字体的字符表2.1 字符表更新模式:动态2.2 字符表更新模式:静态 3 更新字符集步骤3.1 打开纹理更新面板3.1 导入文本文件3.3 关于警告处理 4 修改TMP默认字体设置 1 字符集缺失说明 使用TMP显示中文需要用到中文字体…

SprinBoot+Vue问卷调查微信小程序的设计与实现

目录 1 项目介绍2 项目截图3 核心代码3.1 Controller3.2 Service3.3 Dao3.4 application.yml3.5 SpringbootApplication3.5 Vue3.6 uniapp代码 4 数据库表设计5 文档参考6 计算机毕设选题推荐7 源码获取 1 项目介绍 博主个人介绍:CSDN认证博客专家,CSDN平…

uniapp / uniapp x UI 组件库推荐大全

在 uniapp 开发中,我们大多数都会使用到第三方UI 组件库,提起 uniapp 的UI组件库,我们最常使用的应该就是uview了吧,但是随着日益增长的需求,uview 在某些情况下已经不在满足于我们的一些开发需求,尽管它目…

单例模式的总结

常规模式:有属性/构造方法/普通方法,也可以在类中执行主方法,也可以在test类中执行主方法 单例模式是什么? 单例模式:类只有1个对象;保证一个类仅有一个实例,并提供一个访问它的全局访问点。单例模式是在内…

Linux平台屏幕|摄像头采集并实现RTMP推送两种技术方案探究

技术背景 随着国产化操作系统的推进,市场对国产化操作系统下的生态构建,需求越来越迫切,特别是音视频这块,今天我们讨论的是如何在linux平台实现屏幕|摄像头采集,并推送至RTMP服务。 我们知道,Linux平台&…

pdf压缩到指定大小需要怎么压缩?2024快速进行文件压缩的软件合集

pdf压缩到指定大小需要怎么压缩?2024快速进行文件压缩的软件合集 当你需要将PDF文件压缩到指定的大小时,选择适当的软件和方法可以帮助你在保持文件质量的同时,尽可能地减小文件体积。以下是五款可以帮助你快速压缩PDF文件并控制其大小的软件…

pdf在线转换成word免费版,一键免费转换

在日常的学习和办公中,PDF文件和Word文档是我们离不开的两种最常见的文件,而PDF与Word文档之间的转换成为了我们日常工作中不可或缺的一部分。无论是为了编辑、修改还是共享文件,掌握多种PDF转Word的方法都显得尤为重要。很多小伙伴关心能不能…

linux下的Socket网络编程教程

套接字概念 Socket本身有“插座”的意思,在Linux环境下,用于表示进程间网络通信的特殊文件类型。本质为内核借助缓冲区形成的伪文件。与管道类似的,Linux系统将其封装成文件的目的是为了统一接口,使得读写套接字和读写文件的操作…

万界星空科技MES:企业实现数字化转型的护航者

万界星空科技在制造业管理软件领域,特别是MES系统上的技术实力和创新能力,为制造型企业实现数字化转型提供了全方位的支持和保障。 一、万界星空MES系统的核心功能 实时数据采集与分析: 万界星空科技MES系统通过物联网技术实时采集生产现场的…

阿里P7大牛整理自动化测试高频面试题

最近好多粉丝咨询我,有没有软件测试方面的面试题,尤其是Python自动化测试相关的最新面试题,所以今天给大家整理了一份,希望能帮助到你们。 接口测试基础 1、公司接口测试流程是什么? 从开发那边获取接口设计文档、分…

IDOR + 账户接管

访问控制: 访问控制是对谁或什么有权执行操作或访问资源进行限制。在 Web 应用程序环境中,访问控制依赖于身份验证和会话管理: 身份验证可确认用户确实是其所说的身份。 会话管理识别同一用户发出了哪些后续 HTTP 请求。 访问控制决定用户…

【数据结构取经之路】布隆过滤器BloomFilter原理、误判率推导、代码实现

目录 背景介绍 简介 布隆过滤器的实现思路 布隆过滤器的作用 布隆过滤器误判率推导过程 布隆过滤器的实现 布隆过滤器的删除问题 布隆过滤器的优缺点 布隆过滤器的应用 背景介绍 在一些场景下面,有大量数据需要判断是否存在,而这些数据不是整…

免费分享:2014-2018年全球5.0级及以上地震正式报目录数据集

数据详情 本数据集为2014年—2018年中国台网正式目录(统一编目目录)全球5.0及以上地震6459次地震数据,属性字段包含发震时刻、经度、纬度、深度、地震类型、震级、参考位置、事件类型等。 数据属性 数据名称:全球5.0级及以上地震…

扑捉一只耿鬼(HTML文件)

图例&#xff1a; 代码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><title>耿鬼</title><style>body {background: #fff;font-family: Comfortaa, sans-serif;}* {box-sizing:…

【K8s】专题十三:Kubernetes 容器运行时之 Docker 与 Containerd 详解

本文内容均来自个人笔记并重新梳理&#xff0c;如有错误欢迎指正&#xff01; 如果对您有帮助&#xff0c;烦请点赞、关注、转发、订阅专栏&#xff01; 专栏订阅入口 Linux 专栏 | Docker 专栏 | Kubernetes 专栏 往期精彩文章 【Docker】&#xff08;全网首发&#xff09;Kyl…

硬件工程师笔试面试知识器件篇——电容

目录 电容 2.1、基础 电容原理图 电容实物图 2.1.1、定义 2.1.2、原理 2.1.3、电容的类型 分类1: 分类2: 2.1.4、电容的应用 2.2、相关问题 2.2.1、电容器的电容值如何测量 2.2.2、不同类型的电容器在实际应用中有那些具体差异 2.2.3、如何选择合适的电容器来满…